Prof. Dr. M. Růžička 07.12.2015

T. Malkmus

Praktische Übung zur Vorlesung

Einfühung in Theorie und Numerik partieller Differentialgleichungen

WS 2015/16 — Blatt 6

Abgabe: Montag, den 14.12.2015, via Email an den Assistenten

Aufgabe 1 (8 Punkte)

Sei Ω zulässig mit dem Gitter \mathcal{G}_h trianguliert. Mit φ_i , bezeichnen wir die über dem Gitter definerten Lagrange-Basisfunktionen. Die Massenmatrix $M = (m_{ij})$,

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j$$

ist dünn besetzt: in jeder Zeile ist nur eine geringe Zahl von Einträgen von Null verschieden. Der theoretische Aufwand für die Speicherung und die Matrix-Vektor-Multiplikation ist jeweils von der Ordnung $\mathcal{O}(N)$. Der Aufwand für eine voll besetzte Matrix liegt bei $\mathcal{O}(N^2)$.

Die Daten $d\ddot{u}nn$ bestetzter Matrizen können im sog. $cordinate\ list\ (COO)$ Format gespeichert werden. Im COO Format werden die Tripel (i,j,a_{ij}) , mit $a_{ij}!=0$, in einer Liste gespeichert. Schreiben Sie eine Matriximplementierung, so dass die Matrix A in diesem Format abgespeichert wird.

Testen Sie anschließend Ihre Implementierung anhand der bereits bekannten Probleme der vorherigen Blätter.