Prof. Dr. M. Růžička

F. Rösler

Analysis I

Präsenzaufgabe:

Man berechne

$$\frac{d}{dt} \int_0^{\pi} \sin(tx) \, dx$$

auf zwei Arten: (i) Indem man zuerst das Integral berechnet und dann nach t differenziert und (ii) indem man Satz 5.2, Kapitel 7 anwendet.

Aufgabe 1: (6 Punkte)

- (a) Man bestimme die Konvergenzradien der folgenden Potenzreihen:
 - (i) $\sum_{k=0}^{\infty} \frac{x^k}{k^k}$
 - (ii) $\sum_{k=0}^{\infty} \cosh(k) x^k$
- (b) Man berechne den Konvergenzradius der folgenden Potenzreihe in Abhängigkeit von $a \in \mathbb{R}$:

$$\sum_{k=0}^{\infty} a^{k^2} x^k.$$

Aufgabe 2: (6 Punkte)

- (a) Man zeige, dass die folgenden uneigentlichen Integrale existieren und bestimme ihren Wert
 - (i) $\int_0^1 x^{-\frac{1}{3}} dx$
 - (ii) $\int_0^\infty x e^{-x^2} dx$.
- (b) Man bestimme die Stammfunktionen der folgenden Funktionen
 - (i) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)\cos(x)$
 - (ii) $f: [-1.1] \to \mathbb{R}$, $f(x) = \arcsin(x)$.

Aufgabe 3: (3 Punkte)

Es sei die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ definiert durch $f_n:[-1,1]\to\mathbb{R},\ f_n(x)=\frac{nx^2}{1+n|x|}$. Man zeige: Alle f_n sind differenzierbar, und $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig gegen die Betragsfunktion. Kann die Folge $(f'_n)_{n\in\mathbb{N}}$ gleichmäßig konvergent sein?

Hinweis: Um zu zeigen, dass f_n differenzierbar ist, eignet sich Aufgabe 2 von Blatt 11.