Dr. Alexei Gazca, Tatjana Stiefken

16. Oktober 2023

Numerik I

WiSe 2023/2024 — Blatt 1

https://aam.uni-freiburg.de/agru/lehre/ws23/num/index.html

Abgabe: 3.11.2023, 10:00 Uhr.

Aufgabe 1 (1+1 Punkte)

Zeigen Sie, dass die folgende Probleme gut konditioniert sind:

- (a) Die Addition zweier nichtnegativer oder nichtpositiver Zahlen.
- (b) Die Inversion einer von Null verschiedenen Zahl.

Aufgabe 2 (2 Punkte)

Ein Rechner arbeite mit 10^9 Gleitkommaoperationen pro Sekunde und es seien drei Algorithmen mit Aufwand $\mathcal{O}(n)$, $\mathcal{O}(n^3)$ bzw. $\mathcal{O}(n!)$ zur Lösung derselben Aufgabe gegeben. Wieviele Sekunden, Stunden, Tage oder Jahre benötigen die Algorithmen etwa für die Problemgrößen $n = 10^k$ mit $k \in \{1, \ldots, 6\}$?

Aufgabe 3 (1+2+1 Punkte)

Zu fixierten Normen $\|\cdot\|$ auf \mathbb{R}^n und auf \mathbb{R}^m , bezeichne $\|\cdot\|_{op}$ die induzierte Operatornorm auf $\mathbb{R}^{m\times n}$. Beweisen Sie:

- (a) Die Operatornorm $\|\cdot\|_{op}$ definiert eine Norm auf $\mathbb{R}^{m\times n}$.
- (b) Es gilt

$$||A||_{op} = \sup_{\|x\|=1} ||Ax|| = \inf\{c > 0 : \forall x \in \mathbb{R}^n, \, ||Ax|| \le c \, ||x||\},$$

und das Supremum und das Infimum werden angenommen.

(c) Im Fall $A \neq 0$ folgt für $x \in \mathbb{R}^m$ mit $||x|| \leq 1$ und $||Ax|| = ||A||_{op}$ bereits ||x|| = 1.

Aufgabe 4 (2+2 Punkte)

Für $1 \leq p < \infty$ wird auf \mathbb{R}^l durch $||x||_p = \left(\sum_{j=1}^l |x_j|^p\right)^{1/p}$ eine Norm definiert. Die induzierte Operatornorm sei ebenfalls mit $||\cdot||_p$ bezeichnet.

(a) Zeigen Sie, dass für alle $A \in \mathbb{R}^{m \times n}$ gilt:

$$||A||_1 := \max_{k=1,\dots,n} \sum_{j=1}^m |a_{jk}|$$

(b) Für n = m, zeigen Sie:

$$\frac{1}{\sqrt{n}}\left\|A\right\|_2 \leq \left\|A\right\|_1 \leq \sqrt{n}\left\|A\right\|_2$$

Aufgabe 5 (Fehlerabschätzung)

(4 Punkte)

Seien $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ invertierbar, und $x \in \mathbb{R}^n$ definiert, sodass Ax = b. Für eine approximative Lösung $y \in \mathbb{R}^n$ definiere den Fehler e := x - y und das Residuum r = b - Ay. Zeigen Sie, dass:

$$\frac{1}{\operatorname{cond}_{\|\cdot\|}(A)} \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le \operatorname{cond}_{\|\cdot\|}(A) \frac{\|r\|}{\|b\|}$$