M. Růžička

A. Gazca

K. Böcherer-Linder

25. November 2024

Analysis I

WiSe 2024/25 — Blatt 7

https://aam.uni-freiburg.de/agru/lehre/ws24/ana1/index.html

Abgabe: 2.12.2024, 12:00 Uhr.

Aufgabe 1 (5 Punkte)

Bestimmen Sie zu den Folgen $(a_n)_{n\in\mathbb{N}}$ jeweils die Häufungswerte der Folge und die Häufungspunkte der Menge $\{a_n\mid n\in\mathbb{N}\}.$

- (a) $a_h = (-1)^n + \frac{1}{n}$.
- (b) $a_n = n 2^{k_n}$, wobei $k_n = \max\{m \in \mathbb{N} \mid 2^m \le n\}$.

Lösung:

(a) Häufungswerte der Folge sind -1 und 1.

Beweis: Betrachte die Teilfolgen $a_{2k} = 1 + \frac{1}{2k}$ und $a_{2k+1} = -1 + \frac{1}{2k+1}$. Von beiden Folgen wissen wir schon, dass sie gegen 1, bzw. -1 konvergieren. Weitere Häufungswerte gibt es nicht, da (a_{2k}) und (a_{2k+1}) zusammen die ganze Folge ergeben.

Häufungspunkte der Menge $A := \{a_n \mid n \in \mathbb{N}\}$ sind auch -1 und 1.

Beweis: Sei $\varepsilon > 0$. Beh.: In jeder ε-Umgebung von 1 liegen Elemente aus A. Bew.: Wähle $N > \frac{1}{\varepsilon}$ und $x := 1 + \frac{1}{N}$. Dann ist $x \in A$ und

$$|x-1| = 1 + \frac{1}{N} - 1 = \frac{1}{N} < \varepsilon,$$

also liegt x in einer ε -Umgebung von 1. Für -1 geht der Beweis analog.

Es ist noch zu zeigen, dass es keine weiteren Häufungspunkte gibt. Sei also $x \in \mathbb{R} \setminus \{-1,1\}$. Dann ist entweder x < -1 oder -1 < x < 1 oder x > 1. Wir betrachten exemplarisch den Fall x > 1 (die anderen sind analog) und schreiben $x = 1 + \delta$ mit geeignetem $\delta > 0$. Wir wissen, dass die Menge $\{n \mid a_n > 1 + \frac{\delta}{2}\}$ endlich ist. Folglich sind im Intervall $(x - \frac{\delta}{2}, x + \frac{\delta}{2})$ nur endlich viele der a_n . Damit ist aber klar, dass man dieses Intervall so zu einer Umgebung U verkleinern kann, dass in $U \setminus \{x\}$ keine der a_n mehr liegen. Also ist x kein Häufungspunkt von A.

(b) Behauptung: Jedes $n_0 \in \mathbb{N}_0$ ist Häufungswert der Folge $(a_n)_{n \in \mathbb{N}}$.

Beweis: Es sei $n_0 \in \mathbb{N}_0$. Für $l \in \mathbb{N}$ setze $n_l := 2^l + n_0$. Wir betrachten die Teilfolge $(a_{n_l})_{l \in \mathbb{N}}$. Wähle l_0 so, dass für alle $l > l_0$ gilt: $2^l > n_0$. Für $l \ge l_0$ gilt dann $2^l \le n_l = 2^l + n_0 < 2^l + 2^l < 2^{l+1}$; in kurz:

$$2^l \le n_l \le 2^{l+1}.$$

Folglich ist $l = \max\{m \mid 2^m \le n_l\}$ und damit $k_{n_l} = l$. Also folgt für $l \ge l_0$:

$$a_{n_l} = n_l - 2^{k_{n_l}} = 2^l - n_0 - 2^l = n_0.$$

Damit konvergiert $(a_{n_l})_{l\in\mathbb{N}}$ gegen n_0 .

Behauptung: Die Menge $A:=\{a_n\,|\,n\in\mathbb{N}\}$ hat keine Häufungspunkte.

Beweis: Es ist $a_n \in \mathbb{N}_0 \,\forall n$, also ist $A \subset \mathbb{N}_0$. Für alle $x \in \mathbb{R}$ enthält das Intervall $(x - \frac{1}{2}, x + \frac{1}{2})$ höchstens ein Element. Wie in Teil (a) kann man nun leicht eine kleinere Umgebung U von x angeben, sodass $U \setminus \{x\}$ keine Elemente aus A enthält.

_