M. Růžička

A. Gazca

K. Böcherer-Linder

9. Dezember 2024

Analysis I

WiSe 2024/25 — Blatt 9

https://aam.uni-freiburg.de/agru/lehre/ws24/ana1/index.html

Abgabe: 16.12.2024, 12:00 Uhr.

Aufgabe 1 (5 Punkte)

(a) Seien $f, g: \mathbb{R} \to \mathbb{R}$ gleichmäßig stetig. Zeigen Sie, dass dann auch $f \circ g$ gleichmäßig stetig ist.

(b) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und sei $g: \mathbb{R} \to \mathbb{R}$ definiert durch $g(x) := f(\frac{1}{1+x^2})$. Zeigen Sie, dass g gleichmäßig stetig ist.

Lösung:

- (a) Sei $\delta > 0$ dann existiert wegen der gleichmäßigen Stetigkeit von f, ein $\epsilon > 0$ derart, dass aus $|x-y| < \epsilon$ folgt $|f(x)-f(y)| < \delta$. Auf Grund der gleichmäßigen Stetigkeit von g existiert $\epsilon_2 > 0$ so, dass aus $|x-y| < \epsilon_2$ folgt $|g(x)-g(y)| < \epsilon$. Insgesamt heisst dies, dass für alle $|x-y| < \epsilon_2$ folgt $|(f \circ g)(x) (f \circ g)(y)| < \delta$. Also ist $f \circ g$ gleichmäßig stetig.
- (b) Sei $h: \mathbb{R} \to \mathbb{R}$ definiert durch $h(x) := \frac{1}{1+x^2}$. Offensichtlich ist h stetig und $Bild(h) \subset [0,1] =: K$. Darüber hinaus ist h sogar gleichmäßig stetig, denn für $x, y \in \mathbb{R}$ gilt

$$|h(x) - h(y)| = \left| \frac{1}{1+x^2} - \frac{1}{1+y^2} \right| = |x-y| \frac{|x+y|}{(1+x^2)(1+y^2)}$$

$$\leq |x-y| \left[\underbrace{\frac{|x|}{(1+x^2)}}_{\leq \frac{1}{2}} \cdot \underbrace{\frac{1}{(1+y^2)}}_{\leq 1} + \underbrace{\frac{|y|}{(1+y^2)}}_{\leq \frac{1}{2}} \cdot \underbrace{\frac{1}{(1+x^2)}}_{\leq 1} \right] \leq |x-y|.$$

Da f stetig ist, ist f auf der kompakten Menge K gleichmäßig stetig. Analog zu Teil (a) folgt, dass $f \circ h$ als Verknüpfung zweier gleichmäßig stetiger Funktionen wieder gleichmäßig stetig ist.