Blatt Nr. 4 Halbringe und Inhalte

3. November 2025

Abgabe am 10. November 2025

Nullmengen. Sei $\lambda \colon \mathcal{Q} \to [0, \infty]$ ein Prämaß auf dem Halbring $\mathcal{Q} \subset \mathcal{P}(X)$, und sei $\mu \colon \mathcal{P}(X) \to [0, \infty]$ seine Carathéodory-Forsetzung. Beweisen Sie, dass $E \subset X$ genau dann eine μ -Nullmenge ist, wenn es eine Folge $\{A_n\}_{n=1}^{\infty} \subset \mathcal{Q}$ gibt so, dass jedes $x \in E$ zu unendlich vielen A_n gehört, und

$$\sum_{n=1}^{\infty} \lambda(A_n) < \infty.$$

1. (4 Punkte) Ein Beispielhalbring. Sei $\mathcal{E} \subset \mathcal{P}(X)$ nicht-leer, durchschnittsstabil und vereinigungsstabil. Wir definieren

$$\mathcal{H} := \{ A \setminus B : A, B \in \mathcal{E} \}.$$

Zeigen Sie, dass \mathcal{H} ein Halbring ist.

2. (4 Punkte) Grenzwert von Prämaßen. Sei $(\mu_n)_{n=1}^{\infty}$ eine isotone Folge von Prämaßen auf einem Ring \mathcal{R} , das heißt, $\mu_n(A) \leq \mu_{n+1}(A)$ für alle $A \in \mathcal{R}$, $n \in \mathbb{N}$. Zeigen Sie, dass

$$\mu_{\infty}(A) := \lim_{n \to \infty} \mu_n(A)$$

ein Prämaß auf \mathcal{R} definiert.

- 3. (7 Punkte) Inhalte auf Intervallen. Sei $\mathcal{J} := \{(a,b] \subset \mathbb{R} : a,b \in \mathbb{R}, a \leq b\}$ der Halbring der links-offenen, rechts-abgeschlossenen Intervalle.
- a) Sei $F: \mathbb{R} \to \mathbb{R}$ eine (nicht unbedingt strikt) monoton wachsende Funktion. Zeigen Sie, dass durch $\mu_F((a,b]) := F(b) F(a)$ ein endlicher Inhalt auf \mathcal{J} definiert wird.
- b) Seien $F, G: \mathbb{R} \to \mathbb{R}$ monoton wachsende Funktionen. Zeigen Sie, dass $\mu_F = \mu_G$ genau dann, wenn F G konstant ist.
- c) Sei μ ein endlicher Inhalt auf \mathcal{J} und definiere $F_{\mu} \colon \mathbb{R} \to \mathbb{R}$ durch

$$F_{\mu}(x) \coloneqq \begin{cases} +\mu((0,x]) & \text{für } x \ge 0, \\ -\mu((x,0]) & \text{für } x < 0. \end{cases}$$

Zeigen Sie, dass F_{μ} monoton wachsend ist und $\mu_{F_{\mu}} = \mu$ gilt.

d) Sei $F: \mathbb{R} \to \mathbb{R}$ monoton wachsend. Zeigen Sie $F = F_{\mu_F} + F(0)$.