Blatt Nr. 5 Dynkin-Systeme, monotone Klassen und Produkträume

10. November 2025

Abgabe am 17. November 2025

1. (8 Punkte) F_{σ} - und G_{δ} -Mengen. Seien (X, d) ein metrischer Raum, \mathcal{O} das System aller offenen Untermengen von X und \mathcal{B} die Borel- σ -Algebra auf X. Eine Menge $E \subset X$ heißt F_{σ} -Menge, falls sie als eine abzählbare Vereinigung abgeschlossener Mengen darstellbar ist. Die Menge E heißt G_{δ} -Menge, falls sie als ein abzählbarer Durchschnitt offener Mengen darstellbar ist. Die Systeme aller F_{σ} -bzw. G_{δ} -Untermengen von X bezeichnen wir mit \mathcal{F}_{σ} bzw. \mathcal{G}_{δ} .

Zeigen Sie das Folgende:

- a) Sei $E \subset X$ offen oder abgeschlossen. Dann gilt $E \in \mathcal{F}_{\sigma} \cap \mathcal{G}_{\delta}$.
- b) Das Mengensystem $\mathcal{A} := \mathcal{F}_{\sigma} \cap \mathcal{G}_{\delta}$ ist eine Algebra.
- c) Es gilt $\mathcal{M}(\mathcal{O}) = \mathcal{M}(\mathcal{A})$.
- d) Es gilt $\mathcal{M}(\mathcal{O}) = \mathcal{B}$.
- **2.** (3 Punkte). Sei X eine Menge und $\mathcal{E} \subset \mathcal{P}(X)$. Sei \mathcal{F} das System aller endlichen Durchschnitte von Mengen aus \mathcal{E} . Beweisen Sie, dass gilt $\sigma(\mathcal{E}) = \mathcal{D}(\mathcal{E})$ genau dann, wenn $\mathcal{F} \subset \mathcal{D}(\mathcal{E})$.
- **3.** (6 Punkte). Seien X eine Menge, $A \subset \mathcal{P}(X)$ ein \cap -stabiles System und μ_1, μ_2 endliche Maße auf $\sigma(A)$, die $\mu_1 = \mu_2$ auf A und $\mu_1(X) = \mu_2(X)$ erfüllen. Definieren Sie

$$\mathcal{D} := \{ A \in \sigma(\mathcal{A}) : \mu_1(A) = \mu_2(A) \}.$$

Zeigen Sie das Folgende:

- a) \mathcal{D} ist ein Dynkin-System.
- b) $\mu_1 = \mu_2$ auf $\sigma(\mathcal{A})$.

Finden Sie eine Menge X, ein \cap -stabiles System $\mathcal{A} \subset \mathcal{P}(X)$ und Maße μ_1 , μ_2 auf $\sigma(\mathcal{A})$, sodass $\mu_1 = \mu_2$ auf \mathcal{A} und

- c) $\mu_1(X) \neq \mu_2(X)$ gilt und sowohl a) als auch b) sind falsch;
- d) $\mu_1(X) = \mu_2(X) = \infty$ gilt und sowohl a) als auch b) sind falsch.

4. (3 Punkte) Produkt-Messbarkeit. Seien (X_i, \mathcal{A}_i) , (Y_i, \mathcal{B}_i) nichtleere messbare Räume, und $f_i \colon X_i \to Y_i$ Abbildungen, $i \in I$. Zeigen Sie, dass die Funktion

$$f \colon \prod_{i \in I} X_i \to \prod_{i \in I} Y_i, \quad f((x_i)_{i \in I}) \coloneqq (f_i(x_i))_{i \in I},$$

genau dann $\bigotimes_{i \in I} \mathcal{A}_i$ - $\bigotimes_{i \in I} \mathcal{B}_i$ -messbar ist, wenn für alle $i \in I$ f_i \mathcal{A}_i - \mathcal{B}_i -messbar ist.