Analysis III Prof. Dr. Michael Růžička Dr. Luciano Sciaraffia

Blatt Nr. 6 Das Lebesguemaß

17. November 2025

Abgabe am 24. November 2025

Stetiges Bild einer Lebesgue-messbaren Menge. Betrachten Sie die Folge stetiger Funktionen $f_n: [0,1] \to [0,1]$ definiert durch

$$f_0(x) \coloneqq x, \quad f_{n+1}(x) \coloneqq \begin{cases} \frac{1}{2} f_n(3x), & x \in [0, \frac{1}{3}], \\ \frac{1}{2}, & x \in [\frac{1}{3}, \frac{2}{3}], \\ \frac{1}{2} + \frac{1}{2} f_n(3x - 2), & x \in [\frac{2}{3}, 1], \end{cases} \quad n \in \mathbb{N}.$$

- a) Zeigen Sie, dass $\{f_n\}_{n=1}^{\infty}$ gleichmäßig gegen eine stetige Funktion $f:[0,1]\to [0,1]$ konvergiert.
- b) Zeigen Sie, dass f monoton wachsend ist. Folgern Sie, dass

$$\phi \colon [0,1] \to [0,1], \qquad \phi(x) \coloneqq \frac{1}{2}(x + f(x))$$

ein Homöomorphismus ist.

- c) Sei K die Cantormenge. Zeigen Sie, dass $\phi(K)$ Lebesgue-messbar ist, mit Maß $\frac{1}{2}$.
- d) Zeigen Sie, dass $A \subset \mathbb{R}$ genau dann eine Lebesgue-Nullmenge ist, wenn alle seine Teilmengen $B \subset A$ Lebesgue-messbar sind. (Hinweis: Vitalimenge.)
- e) Zeigen Sie, dass eine Lebesgue-messbar Menge A existiert so, dass $\phi(A)$ nicht messbar ist.
- 1. (3 Punkte) Das Lebesguemaß ist ein metrisches äußeres Maß. Seien $A, B \subset \mathbb{R}^d$. Angenommen, es existiert ein $\delta > 0$ so, dass für alle $a \in A$ und $b \in B$ $|a b| > \delta$ gilt. Zeigen Sie, dass dann für das äußere Lebesguemaß λ^d

$$\lambda^d(A \cup B) = \lambda^d(A) + \lambda^d(B)$$

gilt.

- **2.** (5 Punkte). Sei λ^d das Lebesguemaß auf \mathbb{R}^d .
- a) Zeigen Sie, dass jede Menge vom Maß Null ein leeres Inneres hat.

- b) Zeigen Sie, dass für jedes $\varepsilon > 0$ eine dichte offene Menge O in \mathbb{R}^d existiert, sodass $\lambda^d(O) \leq \varepsilon$.
- c) Zeigen Sie, dass für jedes $\varepsilon > 0$ eine abgeschlossene Menge F mit leerem Inneren existiert, sodass für alle $A \in \mathcal{B}(\mathbb{R}^d)$ gilt:

$$\lambda^d(A \cap F) \ge \lambda^d(A) - \varepsilon.$$

- 3. (7 Punkte) Das Lemma von Sard Dimension 1. Seien $-\infty < a < b < \infty$ und $f \in C^1([a,b])$.
- a) Sei $E := \{x \in (a, b) : f'(x) = 0\}$. Zeigen Sie, dass f(E) eine Lebesgue-Nullmenge ist. (Hinweis: Sie können Lemma 6.16 aus der Vorlesung benutzen.)
- b) Sei $G := \{x \in [a,b] : f(x) = 0\}$ und $H := \{x \in [a,b] : f(x) = 0, f'(x) = 0\}$. Zeigen Sie, dass $G \setminus H$ eine Lebesgue-Nullmenge ist. (Hinweis: Zeigen Sie, dass $A_n := \{x \in (a,b) : f(x) = 0, |f'(x)| \ge \frac{1}{n}\}$ nur endlich viele Elemente enthält.)