

JProf. Dr. Diyora Salimova M.Sc. Mario Keller

Introduction to Theory and Numerics of PDEs - WiSe 2023/2024

Sheet 10

Ausgabe: 22.01.2024, 12:00 Uhr

Abgabe: 29.01.2024, 12:00 Uhr

Homepage to the lecture:

https://aam.uni-freiburg.de/agsa/lehre/ws23/tun0

Exercise 1 (4 points). We consider mesh \mathcal{M} of the interval $\Omega = [a, b]$ with nodes $\{a = x_0 < x_1 < \ldots x_M = b\}$. As in the lecture fix the set of piecewise linear functions

 $S_{1,0}^{0}(\mathcal{M}) = \{ v \in C([a,b]) \mid v \mid [x_{i-1}, x_{i}] \text{ is linear } , i = 1, \dots, M, v(a) = v(b) = 0 \}$

and the set of tent functions $\{\phi^1, \phi^2, \dots, \phi^{M-1}\}$ given by

$$\phi^{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}}, & x_{j-1} \le x \le x_{j} \\ \frac{x_{j+1} - x}{x_{j+1} - x_{j}}, & x_{j} \le x \le x_{j+1}. \end{cases}$$

Show that $\{\phi^1, \phi^2, \dots, \phi^{M-1}\}$ is a basis for $S_{1,0}^0(\mathcal{M})$.

Exercise 2 (4 points). Prove that there is exactly one plane through three non-collinear points in \mathbb{R}^3 .

Exercise 3 (4 points). Let $u \in C^3(\Omega)$. Show that we have

$$|\Delta u|^2 - |D^2 u|^2 = \operatorname{div}(\nabla u \Delta u - \frac{1}{2}\nabla |\nabla u|^2)$$

Exercise 4 (4 points). The mesh displayed in the picture contains a few *hanging nodes* marked with red dots. Sketch a triangulation (without hanging nodes) with the same nodes as that mesh M.

FIG. 1. Mesh M