

Abteilung für JProf. Dr. Diyora Salimova

Introduction to Theory and Numerics of PDEs – WiSe 2023/2024

Sheet 7

Ausgabe: 18.12.2023, 12:00 Uhr Abgabe: 08.01.2024, 12:00 Uhr

Homepage to the lecture:

https://aam.uni-freiburg.de/agsa/lehre/ws23/tun0

Note: You only have to solve 4 exercises out of 8!

Exercise 1 $(2 + 2 \text{ points})$. For $\Omega \subset \mathbb{R}^2$ and $u \in C^2(\Omega)$, let $\tilde{u}(r, \phi) = u(r \cos \phi, r \sin \phi)$.

(i) Show that

$$
\nabla u(r\cos\phi, r\sin\phi) = \left[\partial_r \tilde{u}(r,\phi), r^{-1}\partial_\phi \tilde{u}(r,\phi)\right]^T
$$

and

$$
\Delta u(r\cos\phi, r\sin\phi) = \partial_r^2 \tilde{u}(r,\phi) + r^{-1}\tilde{u}(r,\phi) + r^{-2}\partial_\phi^2(r,\phi).
$$

(ii) Verify that the function $\tilde{u}(r,\phi) = r^{\pi/\alpha} \sin(\phi \pi/\alpha)$ is harmonic.

Exercise 2 (4 points). Let $h \in C(\Omega)$ and assume that

$$
\int_{\Omega} hv \, \mathrm{d}x = 0
$$

for all $v \in C^{\infty}(\Omega)$ with $v = 0$ on $\partial\Omega$. Prove that $h = 0$ in Ω .

Exercise 3 (4 points). Let $a: V \times V \longrightarrow \mathbb{R}$ be symmetric, bilinear and positive semidefinite. Prove that

$$
a(v, w) \le (a(v, v))^{1/2} (a(w, w))^{1/2}
$$

.

Exercise 4 (4 points). Prove that the set of square summable sequences $\ell^2(\mathbb{N})$ = $\{(v_j)_{j\in\mathbb{N}}\mid \sum_{j\in\mathbb{N}}v_j^2<\infty\}$ is a Hilbert space.

Exercise 5 (4 points). Let *V* be a Banach space and let $a: V \times V \longrightarrow \mathbb{R}$ be bilinear, symmetric and positive semidefinite. Moreover, assume that there exist $c_1, c_2 > 0$ such that

$$
c_1||v||_V \le (a(v, w))^{1/2} \le c_2||v||_V
$$

for all $v \in V$. Show that *a* defines a scalar product on *V* and that *V* is a Hilbert space with this scalar product.

Exercise 6 (4 points)**.** Let *V, W* be *n*− and *m*−dimensional linear spaces. Use the Riesz representation theorem to prove that $L(V, W)$ is isomorphic to $\mathbb{R}^{n \times m}$, i.e. that linear mappings can be identified with matrices.

Exercise 7 $(2 + 1 + 1)$ **.**

(i) Show that the linear operator $A: V \longrightarrow W$ is continuous if and only if it is bounded in the sense that there exists $c > 0$ such that

$$
||Av||_W \le c||v||_V
$$

for all $v \in V$.

(ii) Let $A: V \longrightarrow W$ be linear and bounded and let $||A||_{L(V,W)}$ be the infimum of all constants $c > 0$. Show that for all $v \in V$ we have

$$
||Av||_W \le ||A||_{L(V,W)} ||v||_V.
$$

(iii) Show that $A \mapsto ||A||_{L(V,W)}$ defines a norm on the space of linear and bounded operators $L(V, W)$ such that it is a Banach space.

Exercise 8 (4 points). Determine all matrices $M \in \mathbb{R}^{n \times n}$ such that the bilinear map- $\text{ping } a: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R},$

$$
a(x, y) = x^T M y
$$

satisfies the conditions of the (i) Riesz representation theorem and (ii) Lax-Milgram lemma.

We wish you a merry christmas and a happy new year!