NASDE 05.11.2024

Monte Cordo (MC) approximation of If we don't know EX]: variance : we can do $Var(X) = E[(X-E[X])^{2}]$ $X\in\text{L}^2(P;\overline{R})$ $(\overline{E}[\|X\|^2]$ ca) If we don't know $E[X]:$
we can do
 $Var(X) \approx \frac{1}{N} \frac{N}{n^{2}k} (x_{n} - \frac{1}{N} \sum_{i=1}^{N} x_{i})^{2} = 2$
 $E[X]$ If we know $E[X]$ then is biased, i.e. $X_n = (X_n - E[X])^2$ X_n are $(X_n - L(X))$
 X_n are i'd copies of X There is an unbiased version: $\frac{\chi_n$ are ideopies of X There is an unbiased version:

Vor (x) $\approx \frac{1}{N} \sum_{n=1}^{N} \chi_n$ $\qquad \qquad \frac{1}{N-1} \sum_{n=1}^{N} (\chi_n - \frac{1}{N} \sum_{j=1}^{N} \chi_j)^2$
 $= \frac{1}{N} \sum_{n=1}^{N} (\chi_n - \mathbb{E}[x])^2$ $\qquad \qquad \mathbb{E}[Y] = \text{Var}(X)$ $=\frac{1}{N}\sum_{n=1}^{N^{n+1}}\left(\chi_{n}-\mathbb{E}[\chi]\right)^{2}$

 $\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}$ $Pvoof'$ $E[\sum_{n=1}^{N}(\lambda_{n}-\frac{\lambda_{1}+...+\lambda_{N}}{N})^{2}]$ $=$ $\sum_{n=1}^{N}$ Var $\left(-\frac{X_{1}}{N}-\frac{X_{2}}{N}-+\frac{(N-1)}{N}\right)$, X_{n} $=\sum_{n=1}^{N} \mathbb{E} \left[\left(\frac{\lambda_{n} - \frac{\lambda_{1} + \lambda_{n} + \lambda_{n}}{\lambda_{n}} \right)^{2}}{\lambda_{n}} \right] \implies$ - - - - - Xm)
X: icin are independent = 7
uncoverlated $Note:$ $E\left[\left(\begin{matrix} \lambda_{n} & \frac{\lambda_{1}+1}{N}+\lambda_{n} \\ \frac{\lambda_{n}+1}{N} & \frac{\lambda_{n}+1}{N} \end{matrix}\right)\right]=0 \Rightarrow$ $\geq \sum_{i}^N \text{Var}(-\frac{1}{N}x_i) + \text{Var}(-\frac{1}{N}x_i)$ r $E[(X_{n}-\frac{X_{1}+...+X_{N}}{N})^{2}] =$ $Var(N_{11}N_{11}) + PVar(-N_{11}N_{11})$ $\forall q\in\left(\chi_{n}-\frac{\chi_{1}\tau_{-}+\chi_{N}}{\nu}\right)$ $=\sum_{n=1}^{N} \int \frac{1}{N^{2}}Var(X_{1}) + \frac{1}{N^{2}}Vve(X_{2}) +$ $\frac{1}{N^{2}}\frac{(N-1)^{2}}{N^{2}}Vov(N_{n})+1+\frac{1}{N^{2}}Vov(N_{n})$

$$
= \sum_{n=1}^{N}Var(X_1)\left[\frac{1}{N^{2}}\cdot(N-1)+\frac{(N-1)^{2}}{N^{2}}\right]=N\cdot Var(X_1)\cdot\frac{(N-1)\cdot N}{N^{2}}=
$$

$$
z\left(\mathbb{N}-1\right)\cdot\mathbb{V}av\left(\mathbb{X}_{1}\right)
$$

\n $\begin{aligned}\n &\implies \sum_{n=1}^{N} \text{Var}(X_{1}) \left[\frac{1}{N^{2}} \cdot (N - 1) + \frac{(N - 1)^{2}}{N^{2}} \right] = N \cdot \text{Var}(X_{1}) \cdot \frac{(N - 1) \cdot N}{N^{2}} \\ &\implies (N - 1) \cdot \text{Var}(X_{1}) \\ &\text{Remark: One can show the wave estimate} \\ &\text{Var}(X_{1}) \left[\frac{N}{N - 1} \sum_{n=1}^{N} \left(X_{n} - \sum_{i=1}^{N} X_{i} \right)^{2} - \text{Var}(X_{1}) \right]_{L^{2}} \\ &\implies \text{Var}(X_{1}) \left[\frac{1}{N - 1} \sum_{i=1}^{N} \left(X_{n} - \sum_{i=1}^{N} X_{i} \right)^{2} - \text{Var}(X_{1}) \right]_{L^{2}} \\ &\implies \text{Sum} \\ &\text{Sum} \\$
--

If the state space is a metric
space, X has cont. somple peaths If HEIP; $Q\rightarrow w\longmapsto\lambda(t,w)\in S\text{ is an }% \begin{pmatrix}1\quad0\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\quad0\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix$ $\mathbb{P}_{\substack{\partial\\ k-n}}\quad \text{with}\quad \mathsf{X}(\mathsf{t},w) \in \mathsf{S} \text{ is a cont.}$ Il 8 -measurable. -> Struikarely, left, right continuity
Equality types: We say that X and Y Remark: A stochastic process Xig (1) a a povermeter f-v $(t,w) \mapsto \lambda(t,w)$ (1) modifications of couch other if (i) a one parameter family (X, total) $H_t \subseteq \left\{ \begin{array}{l} \chi_t = \bigvee_t \left(\begin{array}{c} \chi_t \\ \chi_t \end{array} \right) = \left\{ \begin{array}{l} \psi \in \mathcal{L}_t \end{array} \right\}, \ \chi_t = \bigvee_t \mathcal{L}_t \end{array} \right\}$ $\begin{pmatrix} f(f) & a & \text{family} \\ 0 & f^{-n} \end{pmatrix}$ (X (\cdot, w) , $w \in L_2$) does not have to be $X(\cdot, \omega)$ of $\mathbb{P} \rightarrow S$, $t \mapsto X(t, \omega)$

(ii) indistinguishable if $\exists A \in \mathbb{S}$. (12, F, P, F) - filtered pubability $P(A)=1$ Remark: Every stochastic process X $A \subseteq \bigcap_{t\in\mathbb{N}} \{X_t = Y_t\}$ Induces filtration via Obviously (ii) => (i)
The reverse is not always frue =
If (i) + left or reight continuity of $\mathbb{F}_{t}^{X} = \mathbb{G}((X_{3}, s_{\leq t}, s_{\in}r))$
 $\mathbb{F}_{t}^{X} = (\mathbb{F}_{t}^{x})_{t \in \mathbb{F}}$ is called the filtreation generated by X Filtration: A filtration F = (F) LET X. is then \mathbb{F}^{\times} -adapted. $I X i S F a doepled : X_t i_S f_S$ $\widetilde{F}_{t_{1}} = \widetilde{\sigma}(\widetilde{F}_{t_{1}}) \leq \widetilde{F}_{t_{2}} = \widetilde{\sigma}(\widetilde{F}_{t_{2}}) \subseteq \mathcal{F}$ \forall $t_1 \leq t_2$ $b_1, b_2 \in \mathcal{P}$

Important stochastic process : Remark One can define BM without standard Brownian motion. (BM) filtration (one removes (i) De_{r}^{n} set $\bigvee_{i=1}^{n} \mathbb{Z}$ Important stochastic process;
Standard Briownian motion (BM) filtriation (one
Definition on (the FR) F). We Wen-Wen-wen-wen-Hochartic process on (in, F, P, F). We $\frac{W_{t_{n-1}}W_{t_{n-1}}-W_{t_n}}{W_{t_{n-2}}-W_{t_n}}$, $\frac{W_{t_1}-W_{t_n}}{W_{t_n}}$ Remark
Filtrid
Mepland
William
Soal:
Thteoria
Thteoria
Historia
Soal: (i) W is F-adapted.
(ii) W has continuous sample paths are independent) (ii) W has continuous sample paths Soal: define stochastic integral (iii) $W_0 = 0$ \in R'' $($ $also$ $P-a.s.$ W^{\prime} . BM W $(i\vartheta)$ $W_{t_2}-W_{t_1}\sim V'(0,(t_2-t_1)\cdot E_{\mathbb{R}^{n}})$ $\left(\begin{array}{c|c}\n\lambda & \lambda & \lambda & \lambda\n\end{array}\right)$ $\forall t_1 \leq t_{2}$ 1 $\left(\right)$ $t_1 = W_{t_1} \approx W(0, (t_2 - t_1) \cdot L_{R^n})$
Stationary increments) Intervaluated X has to be predictable
stationary increments) + religious (in a ceretain sense) (o) $G'(W_{t_2}-W_{t_1})$ and F_{t_1} are predictability: If X is disercte $int_{u}^{t_{1}}\frac{dy}{dx}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ $\frac{dy}{dx}$ $(independent invements)$ N_{n+j} Predictorbolity: If X is disercte
X = (X1, X2, - , KG, ...)
X n+2 1s Fn - measurable.

In case of cont. time set, $F = (F_t)_{t \in [0,T]}$ (iii) Pyeol (F) = $G(X; E_0 P]$ + $E_4 \Rightarrow S$, X is F -adapted
and left continues) We define $Pud(F) = 0 ($ $(S, t] \times A$: $A \in F_S$
 $0 \leq s \leq t \leq P'$ Kegulanety: [SksdWs] V { hogs B : Bx F 3 } predictable WER^m, Is
N_SER^{dxm}, Is Xis F predictable if $\int_{S}\chi_{s}dW_{s}$ $\in\mathbb{R}^{d_{\chi m}}$ X is Rued (F) / 8 measurable. Xis dim meatrix ralued. 1 Remarks;
(i) Predictability => Adaptivity
(i) Adapted + left, continuous => We recall the Hilbert - Schmidt norm
(or Frobenius norm) for a modrex $||A||_{HS} = (= ||A||_{R^{d(w)}}) = (\sum_{i=1}^{d} \sum_{j=1}^{m} |A_{ij}|^{2})^{d/2}$
Next time: Stochastic integrete i^{2} $\begin{array}{c} \begin{array}{c} \text{L} \\ \text{L} \end{array} & \begin{array}{c} \text{L} \\ \text{L} \end{array} & \begin{array}{c} \text{N} \\ \text{L} \end{$