NASDE 08.11.2024

 $\rho\in$ $\lbrack o,\infty)$ $\textcircled{1}\ \forall k \in \{1,\ldots,n-1\} \quad \textcircled{1}. \tag{2}$ $L^{p}(\mathbb{R}ed(\mathbb{F}),\mathbb{H}S(\mathbb{R}^m,\mathbb{R}^d))$
= { $X: [0,T]$ x $L^{q} \ni \mathbb{R}$ \mathbb{H} predictal $Y_{t} = \frac{1}{2} H_{e} - M_{(t_{k}, t_{k+1})} (t)$
 $W_{t_{k}} = \frac{1}{2} H_{e} - M_{e} + M_{e} - M_{e}$ oundr We define $\int_{0}^{\infty}K_{s}dW_{s}$ for $te[0,t_1]$ $V_t = 0$ $t\in (t_1, t_2]$ \downarrow \neq H_1 is \mathcal{H}_t -meas $t\in(t_2,t_3]: Y_t = H_2, F_4$ meas $P = 2$ \Rightarrow \forall is Frandapted + left-cont -First, we define for simple predictable => V is F-predictable. Assume that $Y \in L^2(\mathbb{P} \text{vol}(\mathcal{F}), \mathcal{H} \text{S})$. $\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1-\frac{1}{10}}}\cdot\frac{1}{\sqrt{1$

 $\textcircled{3} \mid \textup{IP} \quad \textup{0} \leq a \leq b \leq \textup{P};$ $\frac{1}{k_{21}}$ they
 $\frac{1}{k_{21}}$ the $\frac{1}{k_{21}}$ the $\frac{1}{k_{21}}$ the $T_{a,b}^{w}(V)=\sum_{k=1}^{n-1}H_{k}\cdot (W_{min(H_{k+j},\beta)})$ = $\frac{n-1}{k-1}$ (t_{k+1} - t_k) • F[||Hg|| $\frac{1}{n}$ < so $\frac{1}{n}$ min $\frac{1}{k}$ term over t_k , a 33) $K=1$ $K=2$
 $H_{R}=2^{R}(P,H_{R})^{R}$
 $H_{R}=2^{R}(P,H_{S})$
 $H_{R}=2^{R}(P,H_{S})$
 $H_{R}=2^{R}(P,H_{S})$
 $H_{R}=2^{R}(P,H_{S})$
 $H_{R}=2^{R}(P,H_{S})$
 $H_{R}=(W_{t_{R+1}}-W_{t_{R}})$
 $H_{R}=(W_{t_{R+1}}-W_{t_{R}})$
 $H_{R}=(W_{t_{R+1}}-W_{t_{R}})$
 $H_{R}=(W_{t_{R+1}}-W_{t_{R}})$
 $H_{$

Main properties of the stochastic 6 (5) $\left(\left\{ \right\} \right)$ $||T^w_{0,b}(\gamma)||_{l^2} \leq ||\gamma||_{l^2}$ $\bigoplus_{\alpha} (\overline{\zeta} \times_{\mathcal{S}} dW_{\mathcal{S}})_{\mathit{te[a,b]}}$ is $\begin{array}{ccccc} & \Rightarrow & \text{I}_{\alpha, b} & \text{is bounded} \\ \text{T}_{\alpha, b} & \text{I}_{\alpha} & \text{I}_{\alpha} & \text{I}_{\alpha} \\ \end{array}$ (\mathbb{F}_{t}) cadapted One showsfat V is dense 2 dinévrity: $\frac{1}{1}$ Sainearchy:
Stats+B)solws= d. SXsdus $L^{2}(\text{Pred}(F), \text{HS})$ => We can cont. extend it to $I_{a,b}^w$, $I_{1}^{2}(Red(F),HS) \rightarrow I_{1}^{2}(R_{1}R_{2}^{d})$ + B $S_{a}^{y}V_{s}$ d W_{s} $\bigotimes_{\alpha}\mathbb{I}^{\beta}\alpha\leq c_{\frac{2}{\alpha}}b$ $\bigotimes_{\alpha}\chi_{\frac{2}{\alpha}}dW_{\frac{2}{\alpha}}=\bigotimes_{\alpha}\chi_{\frac{2}{\alpha}}dW_{\frac{2}{\alpha}}+\bigotimes_{\frac{2}{\alpha}}\chi_{\frac{2}{\alpha}}dW_{\frac{2}{\alpha}}$ $\frac{b}{\sqrt{g}}\sqrt{w_g}$

7 We use stocharstic integrand 10 (4) $\begin{array}{ll} & \textcircled{4} & \textcircled{1} & \textcircled$ 5 Martingale property: In classical analysis: the funda-
mental thm of collusies tells
and clo, P] -> R is in c¹ iff $\mathbb{E}[\int_{0}^{t} X_{s}dW_{s} |F_{u} = \int_{0}^{t} X_{s}dW_{u}$ J M: [0,7] -> R cont. such that he
(3 YgdWs) telop is Fytelop] $x(t) = x(0) + y(1)$ ds and in fluis case vtelog? Ruot: Idea: Ruove for XEV $M=X^{\prime}$. In stochastic analysis: An enalogue Simple Mre the density of VCL2(Pred F), HS to entend it Wet-n. An (IF,)-adapted process $X: [o, P]$ r_h, $\rightarrow \mathbb{R}^d$ with cont. to $\mathcal{L}(\mathbb{R}(\mathbb{R}))$ ($\mathbb{R}(\mathbb{R}),$ $\mathbb{R}(\mathbb{R})$)

sample pathy is called an TH_0^\circledR or equivalently t_{e} (10) process if ER^d to GR^d to $veR^{d\times m}$ $P(X(F)) =$ or equivalently
 $f(x(t)) = f(x(0)) + \int_{0}^{t} f'(x(s)) y(s) ds$
where $t = \lambda_0 + \int_S V_S dS + \int_{S} g_d W_S$ where f or some $\sqrt{\frac{2}{\epsilon}}$ $\frac{2}{\epsilon}$ $\frac{2}{\epsilon}$ $\frac{2}{\epsilon}$ $\lambda_j^{\;\;\mathrm{U}}$ $x(t) = x(0) + \frac{y}{2}y(5)dy$ $Y-duft$, $X-duffuysv$ 1-amot , 2-amplession
Remark on notation: One also writes the chain rule is Its, formula $dX_t = Y_t dt + X_t dW_t$, telo, of $\frac{dW_t}{dt}$ if $f \in C^2(R^d, R)$ then $\begin{array}{l} \mathcal{L}_{P} \cup \mathcal{L}_{P} + \mathcal{L}_{P} \cup \mathcal{R}_{P} \cup \mathcal{L}_{P} \cup \mathcal{$ In classical analysis: We have chain $f(X_t) = f(X_{\alpha}) +$ $\int \sqrt{2} f(x)^p$ Yols $rule_+$ e^{α} , $f^2 = C^4$, then $\sqrt{\sqrt{2}}$ $t + 7$ $f(x(t))$ $(f \circ \chi)'(+) = f'(\chi(t))$. $+\frac{1}{2}\int\limits_{\alpha}^{\alpha} \frac{f\cdot u}{\sigma}d\theta \left(\frac{\chi_{s}^{p}(D^{2}f)(\chi_{s})\chi_{s}}{\chi_{s}dW_{s}}\right) ds$

 $I, C. (f(X_k))_{k \in [0,T]}$ is also an Itz Example $\overline{\mathcal{O}}$ Example: Geometric BM $proces$ with drift $\frac{u}{\lambda_{L}}$ = $\frac{9}{2}$ exp($(d-\frac{5}{2})t + \beta W_L$) $\int_{0}^{1} \left(\frac{x}{\lambda_{c}}\right)^{n} y_{c} + \frac{1}{\lambda_{c}} \left(\frac{x}{\lambda_{c}}\right) \left(\frac{x}{\lambda_{c}}\right) \left(\frac{x}{\lambda_{c}}\right) \left(\frac{x}{\lambda_{c}}\right)$ 5, 2, B ER are constants and duffusion $\left(\nabla f(\gamma_t)^p\right)$ W L) $t \in$ $[$ σ , φ $]$. $X_t = (d$ we constant
 $(\frac{B^2}{2})t + \beta$. W_{t} t Remark: Using this you can deduce $\int (d-\frac{p^2}{2})d\,s + \int p\,dW_s$ time dependent version of Its formule $f(t, \lambda_L)$ = ... (sheet 4) $z \lambda_{\rho} +$ $\int_{0}^{\frac{12}{3}}(d-\frac{b^{2}}{2})ds +$ d Ws
6 BdWs
3 m $\frac{1}{2}$ Our can also hours Le $C^{2}(\mathbb{R}^{d},\mathbb{R}^{d})$ \rightarrow One can also how's fec²(R^d, Rⁿ) χ is an Ito process. $f(y) = 5 - e^{y}$ $X_{t} = f(X_{t}) =$ x_0
 x_1
 y_2
 y_3
 y_4
 y_5
 y_6
 y_7
 y_8
 y_9
 y_1
 y_2
 y_3
 y_4

 $+\frac{1}{2}\int_{0}^{\infty}b^{2}\cdot f^{\mu}(x)dx+\int_{0}^{\pi}f^{\prime}(x)BdW_{S}^{(3)}|y_{\sigma^{2}}S,y$ $te\ \mathcal{L}_0, P$ = f(x)+ jg. e^x (d-p2) + 1 p23 = e^{x 5}] ds Next time : SDES, existenced neni- $+\int_{0}^{2}5\cdot e^{y^{2}}\cdot p\cdot dW_{s}$ $29 + \int_{0}^{6} 4 \cdot e^{\frac{x}{30}} ds + \int_{0}^{6} 4 \cdot e^{\frac{x}{30}} ds$ $=$ 3 + \int_{0}^{1} d. X_{5} ds + \int_{0}^{1} ß. X_{5} dWs \Rightarrow $\frac{1}{16}$ = $\frac{2}{3}$ + $\frac{5}{2}$ d $\frac{7}{16}$ ds + $\frac{8}{3}$. $\frac{7}{16}$ dy It a sol-4 of the stochastic dufferential eq-in (SDE) $dV_E = dV_E dt + BV_E dW_E$