Sheet 2

- **1.** Let $F: \mathbb{R} \to [0,1]$ be a distribution function and let $I_F: (0,1) \to \mathbb{R}$ be the generalized inverse distribution function associated to F. Prove that for all open sets $D \subseteq \mathbb{R}$ with the property that $F|_D: D \to [0,1]$ is injective and all $y \in F(D): F|_D^{-1}(y) = I_F(y)$.
- **2.** Let $a, b \in \mathbb{R}$ be real numbers with a < b and let $F \colon \mathbb{R} \to [0, 1]$ be a distribution function which satisfies for all $y \in (0, 1)$ that

$$I_F(y) = yb + (1 - y)a.$$
 (1)

Specify F(x), $x \in \mathbb{R}$, explicitly and prove that your result is correct.

3. Prove or disprove the following statement: For all infinitely often differentiable functions $f: [0,1] \to \mathbb{R}$ it holds that

$$\inf_{n \in \mathbb{N}} \left(n^2 \left| T_{[0,1]}^n[f] - \int_0^1 f(x) \, dx \right| \right) = 0, \tag{2}$$

where $T_{[0,1]}^n$ is the trapezoidal rule.

Due: Monday, 04.11.2024.

Webpage: https://aam.uni-freiburg.de/agsa/lehre/ws24/numsde/index.html