University of Freiburg Numerical Approximation of SDEs Winter 2024 /25
JProf. Dr. Diyora Salimova
M.Sc. llkhom Mukhammadiev

Practical Sheet 2

Note that we do not distinguish between pseudo random numbers and actual random

numbers.

1.

a)

Write a MATLAB function RecRule(a,b,d,n,f) with input a € R, b € (a,0),
dneN, f:la,b]? >R € El(B[a’b]d; |-|g) and output Ry, b}d[f]'

Hint: Implement the evaluation of f in the rectangle rule recursively. To this end,

write a subroutine RecRuleRecursion(f,...,d). Specify the remaining input pa-
rameters of the recursion, and use the following (rough) structure for your code:
1: procedure RECRULERECURSION(, ... ,d)

2: if d > 1 then

3: for ig€{0,...,n—1} do

4: Fix the d-th coordinate x4, := a + %(b —a).

5: Evaluate the (d — 1)-dimensional integral with respect
6: to the domain [a, b]“~1) x {z4;,} by calling

7: RecRuleRecursion(f, ..., d-1) and add the result
8: to the overall approximation.

9: end for

10: else

11: Use the one-dimensional rectangle rule and add the result
12: to the overall approximation.

13: end if
14: end procedure

b)

Let a=0,b=1andlet f =[0,1]¢ 3 (z1,...,24) — 21 € R. Test your implemen-
tation by computing

(1)

R olf] - /[a,b]d f(@) da

R

for n € {2%,2°,...,2'0} d € {1,2,3}, and measure the execution time for each d
and n. For each d, plot the error in Eq. (1) against the execution time. Plot all
three error curves in one diagram with logarithmic scale and times on the z-axis.

Hint: Use the built-in function loglog to generate a logarithmic plot.

2. Letde Nyae R, be (a,0), f € L'I(B[a’b}d; |'|r), let (Q, F, P) be a probability space,

and let X;: Q — R, j € N, be a sequence of independent U|q pe-distributed random

variables on (2, F, P). For all N € N define the functions

b—a)? |
iy = O OTS x|)
j=1
The function Iy as in Eq. (2) is the Monte Carlo estimator of the integral

- (z) dz = (b—a)"Ep[f(X1)]. (3)
a) Write a MATLAB function intMC(a,b,d,N,f) with input a € R, b € (a,0),
deN, fe EI(B[a,b]d; |'lg), IV € N that outputs a realization of I.

b) Test your MATLAB function intMC(a,b,d,f,N) by repeating the experiment from
Problem 1, b) above: Let a =0, b= 1and let f =[0,1] > (z1,...,24) = =1 € R.
Test your implementation by computing

Iy — f(x)dx
[a,b]

(4)

R

for N € {21 215 220} 4 € {1,2,3}, and measure the execution time for each
d and n. Plot again the error for any dimension d against the execution time and
compare the results to the rectangular rule from Problem 1.

3. Approximative realizations of a one-dimensional standard Brownian motion:
Let A be the set given by

A=U2 {6 = (t1,. .. tn) € [0,00)": #r({t1,...,tn}) =1}, (5)

let length: A — N be the function which satisfies for all n € N, t = (¢1,...,t,) €
[0,00)™ N A that
length(t) = n, (6)

and let @Q: A — (U2, R™™) be the function which satisfies for all n € N, t =
(t1,...,ty) € [0,00)" N A that

Qt) = (min{ti, ;1) jyeqr,...my2 "

Write a MATLAB function StandardBrownianMotion(t) with input t € A and out-
put a realization of an J\/’07Q(t)—distributed random variable. The MATLAB function
StandardBrownianMotion(t) may use at most length(t) realizations of an Ny rp-
distributed random variable. Call the MATLAB commands

1 |rng(’default’);

2 [N=10"3;

3 |preimage = (0:1/N:1);

1 |X=StandardBrownianMotion (preimage) ;
5 |plot (preimage , X) ;

¢ |hold on

7 |[X=StandardBrownianMotion (preimage) ;
s | plot (preimage ,X,’r’);

9 |[X=StandardBrownianMotion (preimage) ;
10 |[plot (preimage ,X,’g’);

to test your implementation.

Due: Friday, 15.11.2024.
Webpage: https://aam.uni-freiburg.de/agsa/lehre/ws24/numsde/index.html

