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Note that we do not distinguish between pseudo random numbers and actual random
numbers.

1. Let T, x0 ∈ (0,∞), α, β ∈ R, let (Ω,F , P ) be a probability space, letW : [0, T ]×Ω → R

be a standard Brownian motion, let X : [0, T ]×Ω → R be the stochastic process which
satisfies for all t ∈ [0, T ] that

Xt = e(αt+βWt) x0. (1)

The stochastic process X is known as geometric Brownian motion and used in the
Black-Scholes model for the valuation of financial derivatives.

a) Write aMatlab function MonteCarloGBM(T,α,β,x0,f,N) with input T ∈ (0,∞),
α, β ∈ R, x0 ∈ (0,∞), f : R→ R, N ∈ N and output a Monte Carlo approxima-
tion of

E
[
f(XT )

]
(2)

based onN ∈ N samples. Call your function MonteCarloGBM(T, α, β, x0,f,N)

with the parameters T = 1, β = 1
10 , α = ln(1.06) − β2

2 , x0 = 92, f = R ∋ x 7→
[x− 100]+ ∈ R, N = 104.

b) Let Φ: R→ R be the N (0, 1)-distribution function, i.e. Φ(y) :=
∫ y
−∞

1√
2π

e−
1
2
x2
dx

for all y ∈ R. It can be shown that for all K ∈ R it holds that

E
[
max{XT −K, 0}

]
=

e(α+
1
2
β2)T x0 −K : K ≤ 0

e(α+
1
2
β2)T x0Φ

(
αT+ln(

x0
K

)

β
√
T

+ β
√
T
)
−K Φ

(
αT+ln(

x0
K

)

β
√
T

)
: K > 0

.
(3)

Use equation (3) and the built-in Matlab function normcdf(. . . ) to calculate

E
[
max{XT − K, 0}

]
in the case T = 1, β = 1

10 , α = ln(1.06) − β2

2 , x0 = 92,
K = 100. Compare this result with the result of item a).

2. Let T ∈ (0,∞), d,m,N ∈ N, ξ ∈ Rd, µ ∈ M
(
B(Rd),B(Rd)

)
, σ ∈ M

(
B(Rd),B(Rd×m)

)
,

let (Ω,F , P, (Ft)t∈[0,T ]) be a filtered probability space, let W : [0, T ] × Ω → R
m be an

m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and consider the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ. (4)



(i) Write a Matlab function EulerMaruyama(T,m,ξ,µ,σ,W) which performs the
Euler–Maruyama scheme with time step size h = T

N for the SDE above, where (be-
sides the input parameters T,m, ξ named above) the input functions µ : Rd×M →
R

d×M and σ : Rd×M → R
d×Mm can be thought of as extended versions of above

µ and σ, and the input parameter W ∈ R(N+1)×Mm is a realization of M in-
dependent m-dimensional Brownian motions at the nodes

{
nT
N : n = 0, . . . , N

}
,

i.e. W :,i+(k−1)M =
(
W k

0 ,W
k
T
N

,W k
2T
N

, . . . ,W k
(N−1)T

N

,W k
T

)
(ωi) for i = 1, 2, . . . ,M and

k = 1, . . . ,m. The function should return the realizations of the Euler-Maruyama
approximation YN (ωi) ∈ Rd at the endpoint T for i = 1, 2, . . . ,M . You can use
the template EulerMaruyama template.m for this.

(ii) Investigate the strong error of the Euler–Maruyama scheme by fixing the parame-
ters d = 2, m = 2, T = 1,

µ(x1, x2) =

(
0.5x1
2x2

)
, σ(x1, x2) =

(
x1 0
0 2x2

)
, ξ =

(
1
2

)
, (5)

and using Nℓ = 10 · 2ℓ, hℓ = T/Nℓ for ℓ ∈ {0, 1, . . . , 4}. To do so: genera-
te M = 105 sample paths of the Brownian motion at the finest grid points
{jh4 : j = 0, 1, . . . , N4}. Based on these, generate for each ℓ ∈ {0, 1, . . . , 4} the
M corresponding approximations to XT with values Y hℓ

Nℓ
. Then use the M si-

mulations of Ehℓ := ∥Y hℓ
Nℓ

− XT ∥R2 , where ∥ · ∥R2 is the Euclidean norm on R2,
for ℓ = 0, 1, . . . , 4 to determine the “experimental strong convergence rate” of
EM (Ehℓ) := 1

M

∑M
j=1 E

hℓ

(j) with respect to hℓ. Hints:

• Using the SDE representations of two suitable geometric Brownian motions,
you can derive the exact solution X of (4).

• Estimate the convergence rate by a linear regression of log(EM (Ehℓ)) on the
log-stepsizes log(hℓ). For this you may use the Matlab function polyfit.

3. Let T ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ] × Ω → R

be a one-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let ξ ∈ R, let
µ : R → R be globally Lipschitz continuous and let σ ∈ C1(R;R). Consider the
(general) one-dimensional SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, t ∈ [0, T ], X0 = ξ. (6)

(i) Write a Matlab function Milstein1D(T, ξ, µ, σ, σ′,W ) that applies the Milstein
scheme to discretize the one-dimensional SDE (6). The input parameters µ, σ, and
σ′ are function handles and W ∈ R(N+1)×M is a realization of M independent one-
dimensional Brownian motions at the nodes

{
nT
N : n = 0, . . . , N

}
, i.e. (W :,i) =(

W0,W T
N
,W 2T

N
, . . . ,W (N−1)T

N

,WT

)
(ωi) for i = 1, 2, . . . ,M .

Hint: The easiest way is to modify the solution EulerMaruyama.m from the above
Exercise 2 for a one-dimensional SDE.



(ii) Test your implementation for the SDE

dXt = Xtdt+ log
(
1 +X2

t

)
dWt, t ∈ [0, T ], X0 = 1. (7)

Find experimental convergence rates. For this use M = 105 and Nℓ = 10 · 2ℓ,
hℓ = T/Nℓ for ℓ = 0, 1, ..., 4 and report on the experimental rates of strong con-

vergence in L1 and L2, i.e., of 1
M

∑M
j=1 E

hℓ

(j) and
(

1
M

∑M
j=1(E

hℓ

(j))
2
) 1

2 . Use as an
approximation of the exact solution a numerical solution of the SDE on the level
L = 7 of refinement.
For this task, you may use the template Milstein SDE template.m

(iii) Repeat item (ii) for the SDE

dXt = Xtdt+ sin
(
1 +X2

t

)
dWt, t ∈ [0, T ], X0 = 1. (8)

Comment on the results for the SDEs (7) and (8).

Due: Friday, 29.11.2024.
Webpage: https://aam.uni-freiburg.de/agsa/lehre/ws24/numsde/index.html


