Practical Sheet 3

Note that we do not distinguish between pseudo random numbers and actual random numbers.

1. Let $T, x_0 \in (0, \infty), \alpha, \beta \in \mathbb{R}$, let (Ω, \mathcal{F}, P) be a probability space, let $W : [0, T] \times \Omega \to \mathbb{R}$ be a standard Brownian motion, let $X: [0, T] \times \Omega \to \mathbb{R}$ be the stochastic process which satisfies for all $t \in [0, T]$ that

$$
X_t = e^{(\alpha t + \beta W_t)} x_0.
$$
\n⁽¹⁾

The stochastic process X is known as geometric Brownian motion and used in the Black-Scholes model for the valuation of financial derivatives.

a) Write a MATLAB function MonteCarloGBM(T, α , β , x_0 , f , N) with input $T \in (0,\infty)$, $\alpha, \beta \in \mathbb{R}, x_0 \in (0, \infty), f: \mathbb{R} \to \mathbb{R}, N \in \mathbb{N}$ and output a Monte Carlo approximation of

$$
\mathbb{E}\big[f(X_T)\big] \tag{2}
$$

based on $N \in \mathbb{N}$ samples. Call your function MonteCarloGBM(T, α , β , x_0 , f, N) with the parameters $T = 1$, $\beta = \frac{1}{10}$, $\alpha = \ln(1.06) - \frac{\beta^2}{2}$ $\frac{\partial^2}{\partial x^2}$, $x_0 = 92$, $f = \mathbb{R} \ni x \mapsto$ $[x - 100]^+ \in \mathbb{R}, N = 10^4.$

b) Let $\Phi: \mathbb{R} \to \mathbb{R}$ be the $\mathcal{N}(0, 1)$ -distribution function, i.e. $\Phi(y) := \int_{-\infty}^{y} \frac{1}{\sqrt{2}}$ $rac{1}{2\pi}e^{-\frac{1}{2}x^2}dx$ for all $y \in \mathbb{R}$. It can be shown that for all $K \in \mathbb{R}$ it holds that

$$
\mathbb{E}\left[\max\{X_T - K, 0\}\right] \n= \begin{cases}\ne^{(\alpha + \frac{1}{2}\beta^2)T} x_0 - K & : K \le 0 \\
e^{(\alpha + \frac{1}{2}\beta^2)T} x_0 \Phi\left(\frac{\alpha T + \ln(\frac{x_0}{K})}{\beta \sqrt{T}} + \beta \sqrt{T}\right) - K \Phi\left(\frac{\alpha T + \ln(\frac{x_0}{K})}{\beta \sqrt{T}}\right) & : K > 0\n\end{cases}
$$
\n(3)

Use equation (3) and the built-in MATLAB function normcd $f(\ldots)$ to calculate $\mathbb{E}[\max\{X_T - K, 0\}]$ in the case $T = 1, \beta = \frac{1}{10}, \alpha = \ln(1.06) - \frac{\beta^2}{2}$ $\frac{3^2}{2}$, $x_0 = 92$, $K = 100$. Compare this result with the result of item a).

2. Let $T \in (0, \infty), d, m, N \in \mathbb{N}, \xi \in \mathbb{R}^d, \mu \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d)), \sigma \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^{d \times m})),$ let $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t \in [0,T]})$ be a filtered probability space, let $W : [0,T] \times \Omega \to \mathbb{R}^m$ be an m-dimensional standard $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t \in [0,T]})$ -Brownian motion, and consider the SDE

$$
dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T], \qquad X_0 = \xi.
$$
 (4)

- (i) Write a MATLAB function EulerMaruyama (T,m,ξ,μ,σ,W) which performs the Euler–Maruyama scheme with time step size $h = \frac{T}{\lambda}$ $\frac{T}{N}$ for the SDE above, where (besides the input parameters T, m, ξ named above) the input functions $\mu \colon \mathbb{R}^{d \times M} \to$ $\mathbb{R}^{d\times M}$ and $\sigma: \mathbb{R}^{d\times M} \to \mathbb{R}^{d\times Mm}$ can be thought of as extended versions of above μ and σ , and the input parameter $W \in \mathbb{R}^{(N+1)\times Mm}$ is a realization of M independent *m*-dimensional Brownian motions at the nodes $\{\frac{n}{N}: n = 0, \ldots, N\},\$ i.e. $W^{:,i+(k-1)M} = \left(W_0^k, W_{\frac{T}{N}}^k, W_{\frac{2T}{N}}^k, \ldots, W_{\frac{(N-1)T}{N}}^k\right)$ $(W_T^k)(\omega_i)$ for $i = 1, 2, ..., M$ and $k = 1, \ldots, m$. The function should return the realizations of the Euler-Maruyama approximation $Y_N(\omega_i) \in \mathbb{R}^d$ at the endpoint T for $i = 1, 2, ..., M$. You can use the template EulerMaruyama template.m for this.
- (ii) Investigate the strong error of the Euler–Maruyama scheme by fixing the parameters $d = 2, m = 2, T = 1,$

$$
\mu(x_1, x_2) = \begin{pmatrix} 0.5x_1 \\ 2x_2 \end{pmatrix}, \qquad \sigma(x_1, x_2) = \begin{pmatrix} x_1 & 0 \\ 0 & 2x_2 \end{pmatrix}, \qquad \xi = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad (5)
$$

and using $N_{\ell} = 10 \cdot 2^{\ell}, h_{\ell} = T/N_{\ell}$ for $\ell \in \{0, 1, ..., 4\}$. To do so: generate $M = 10^5$ sample paths of the Brownian motion at the finest grid points ${jh_4: j = 0, 1, \ldots, N_4}$. Based on these, generate for each $\ell \in \{0, 1, \ldots, 4\}$ the M corresponding approximations to X_T with values $Y_{N_e}^{h_\ell}$ $N_{N_{\ell}}^{n_{\ell}}$. Then use the M simulations of $\mathcal{E}^{h_{\ell}} := ||Y_{N_{\ell}}^{h_{\ell}}||$ $\frac{ch_{\ell}}{N_{\ell}} - X_T \|_{\mathbb{R}^2}$, where $\| \cdot \|_{\mathbb{R}^2}$ is the Euclidean norm on \mathbb{R}^2 , for $\ell = 0, 1, \ldots, 4$ to determine the "experimental strong convergence rate" of $E_M(\mathcal{E}^{h_\ell}) := \frac{1}{M} \sum_{j=1}^M \mathcal{E}^{h_\ell}_{(j)}$ $\int_{(j)}^{n_{\ell}}$ with respect to h_{ℓ} . Hints:

- Using the SDE representations of two suitable geometric Brownian motions, you can derive the exact solution X of (4) .
- Estimate the convergence rate by a linear regression of $log(E_M(\mathcal{E}^{h_\ell}))$ on the log-stepsizes $log(h_\ell)$. For this you may use the MATLAB function polyfit.
- **3.** Let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t \in [0,T]})$ be a stochastic basis, let $W : [0, T] \times \Omega \to \mathbb{R}$ be a one-dimensional standard $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t\in[0,T]})$ -Brownian motion, let $\xi \in \mathbb{R}$, let $\mu : \mathbb{R} \to \mathbb{R}$ be globally Lipschitz continuous and let $\sigma \in C^1(\mathbb{R}; \mathbb{R})$. Consider the (general) one-dimensional SDE

$$
dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0, T], \quad X_0 = \xi.
$$
 (6)

(i) Write a Matlab function Milstein1D(T, $\xi, \mu, \sigma, \sigma', W$) that applies the Milstein scheme to discretize the one-dimensional SDE (6). The input parameters μ , σ , and σ' are function handles and $W \in \mathbb{R}^{(N+1) \times M}$ is a realization of M independent onedimensional Brownian motions at the nodes $\{\frac{n}{N} : n = 0, \ldots, N\}$, i.e. $(W^{:,i}) =$ $(W_0, W_{\frac{T}{N}}, W_{\frac{2T}{N}}, \dots, W_{\frac{(N-1)T}{N}}, W_T)(\omega_i)$ for $i = 1, 2, \dots, M$.

Hint: The easiest way is to modify the solution EulerMaruyama.m from the above Exercise 2 for a one-dimensional SDE.

(ii) Test your implementation for the SDE

$$
dX_t = X_t dt + \log(1 + X_t^2) dW_t, \quad t \in [0, T], \quad X_0 = 1.
$$
 (7)

Find experimental convergence rates. For this use $M = 10^5$ and $N_{\ell} = 10 \cdot 2^{\ell}$, $h_{\ell} = T/N_{\ell}$ for $\ell = 0, 1, ..., 4$ and report on the experimental rates of strong convergence in L^1 and L^2 , i.e., of $\frac{1}{M} \sum_{j=1}^M \mathcal{E}_{(j)}^{h_\ell}$ $\frac{h_{\ell}}{(j)}$ and $\left(\frac{1}{M}\right)$ $\frac{1}{M}\sum_{j=1}^M(\mathcal{E}_{(j)}^{h_\ell})$ $(\frac{h_{\ell}}{(j)})^2)^{\frac{1}{2}}$. Use as an approximation of the exact solution a numerical solution of the SDE on the level $L = 7$ of refinement.

For this task, you may use the template Milstein SDE template.m

(iii) Repeat item (ii) for the SDE

$$
dX_t = X_t dt + \sin\left(1 + X_t^2\right) dW_t, \quad t \in [0, T], \quad X_0 = 1. \tag{8}
$$

Comment on the results for the SDEs (7) and (8).

Due: Friday, 29.11.2024. Webpage: https://aam.uni-freiburg.de/agsa/lehre/ws24/numsde/index.html