Sheet 4

1. a) Specify explicitly measurable spaces (Ω, \mathcal{F}) and (S, \mathcal{S}) and \mathcal{F}/\mathcal{S} -measurable functions $X, Y: \Omega \to S$ such that

$$\{X = Y\} = \{\omega \in \Omega \colon X(\omega) = Y(\omega)\} \notin \mathcal{F}.$$
 (1)

Prove that your result is correct.

- b) Give an example of stochastic processes X and Y which are modifications of each other but not indistinguishable from each other. Prove that your result is correct.
- **2.** Modifications with continuous sample paths: Let (Ω, \mathcal{F}, P) be a probability space, let $T \in [0,\infty), m \in \mathbb{N}$, let $X, Y \colon [0,T] \times \Omega \to \mathbb{R}^m$ be stochastic processes with continuous sample paths which satisfy for all $t \in [0, T]$ that $P(X_t = Y_t) = 1$. Prove that X and Y are indistinguishable from each other.

Hint: Use the fact that the rational numbers are dense in \mathbb{R} .

3. Itô's formula for time-dependent test functions: Let $T \in (0, \infty)$, $d, m \in \mathbb{N}$, let $(\Omega, \mathcal{F}, P, P)$ $(\mathbb{F}_t)_{t \in [0,T]}$ be a filtered probability space, let

$$f: \mathbb{R}^{d+1} \ni (s, x) \mapsto f(s, x) \in \mathbb{R}$$
 (test function)

be a *twice* continuously differentiable function, and let $X \colon [0,T] \times \Omega \to \mathbb{R}^d$ be an Itô process with drift

$$Y \colon [0,T] \times \Omega \to \mathbb{R}^d, \tag{drift}$$

diffusion

$$Z: [0,T] \times \Omega \to \mathbb{R}^{d \times m}$$
 (diffusion)

and standard Brownian motion $W: [0,T] \times \Omega \to \mathbb{R}^m$. Use the Itô's formula from the class to show that $(f(t, X_t))_{t \in [0,T]}$ is also an Itô process and derive the corresponding drift and diffusion processes.

Due: Friday, 15.11.2024. Webpage: https://aam.uni-freiburg.de/agsa/lehre/ws24/numsde/index.html