Mathematical Introduction to Deep Neural Networks

Exercise Sheet 5

Exercise 1. Show that there exists an ANN $\Phi \in \mathbf{N}$ such that $\mathcal{R}^{\mathbf{N}}_{\mathfrak{r}} \colon \mathbb{R}^3 \to \mathbb{R}$ and for all $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ it holds that

$$(\mathcal{R}_{\mathbf{r}}^{\mathbf{N}}(\Phi))(x) = \max\{x_1, x_2, x_3\}. \tag{1}$$

Here \mathfrak{r} is a ReLU activation function. Estimate the number of parameters of Φ .

Exercise 2. Show that there exists an ANN $\Phi \in \mathbb{N}$ such that $\mathcal{R}^{\mathbb{N}}_{\mathfrak{r}} \colon \mathbb{R}^3 \to \mathbb{R}$ and for all $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ it holds that

$$(\mathcal{R}_{r}^{N}(\Phi))(x) = \min\{x_1, x_2, x_3\}. \tag{2}$$

Here \mathfrak{r} is a ReLU activation function. Estimate the number of parameters of Φ .

Exercise 3. Show that there exists an ANN $\Phi \in \mathbf{N}$ such that $\mathcal{R}^{\mathbf{N}}_{\mathfrak{r}} \colon \mathbb{R}^3 \to \mathbb{R}^2$ and for all $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ it holds that

$$(\mathcal{R}_{\mathbf{r}}^{\mathbf{N}}(\Phi))(x) = (\max\{x_1, x_2, x_3\}, \min\{x_1, x_2, x_3\}). \tag{3}$$

Here \mathfrak{r} is a ReLU activation function. Estimate the number of parameters of Φ .

Additionally, Exercises 2.2.3 in the lecture notes.