Albert-Ludwigs-Universität Freiburg Abteilung für Angewandte Mathematik Dr. Keith Anguige

Lineare Algebra II

Blatt 12 Lösungen

Aufgabe 1. A symmetrisch $\Rightarrow \exists Q \in \mathbb{R}^{n \times n} : QQ^{\top} = I$ und eine Diagonalmatrix D, sodass $A = Q^{\top}DQ$.

Es gilt

$$0 = A^2 = Q^{\top} D Q Q^{\top} D Q = Q^{\top} D^2 Q \qquad \stackrel{(Q \text{ regul"ar})}{\Longrightarrow} \qquad D^2 = 0 \quad \Rightarrow \quad D = 0 \quad \Rightarrow \quad A = 0.$$

Aufgabe 2. Das Kriterium von Sylvester ergibt, dass A positiv definit ist. Also es gibt eine Zerlegung $A = Q^{\top}DQ$, $D = \text{diag}(\lambda_1, \dots, \lambda_n), \lambda_i > 0 \ \forall i$.

Sei nun $B := Q^{\top} \sqrt{D}Q$, mit $\sqrt{D} := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. Also B ist reell und es gilt $B^2 = Q^{\top} \sqrt{D}QQ^{\top} \sqrt{D}Q = Q^{\top}DQ = A$.

Aufgabe 3. (1) $A_{ij} = a_i \cdot a_j = a_j \cdot a_i = A_{ji} \Rightarrow A = A^{\top} \Rightarrow A$ diagonalisierbar.

- (2) $u \neq 0 \Rightarrow \dim \operatorname{Sp}(u) = 1$. Ausserdem ist $\mathbb{R}^n = \operatorname{Sp}(u) \oplus \operatorname{Sp}(u)^{\perp} \Rightarrow \dim \operatorname{Sp}(u)^{\perp} = n 1$.
- (3) $\operatorname{Sp}(u)^{\perp}$ ist die Lösungsmenge der Gleichung $u^{\top}x=0$. Eine Basis davon ist

$$\begin{pmatrix} -\frac{a_2}{a_1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} -\frac{a_3}{a_1} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \dots \begin{pmatrix} -\frac{a_n}{a_1} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},$$

falls $a_1 \neq 0$; sonst permutiere.

Eine ONB finden wir mit Gram-Schmidt - nennen wir die obige Basis $\{v_i\}$, dann ist eine (noch zu normalisierende) Orthogonalbasis iterativ gegeben durch

$$u_j = v_j - \sum_{i=1}^{j-1} \frac{\langle v_j, u_i \rangle}{\|u_i\|^2} u_i.$$

Für allgemeine a_i und n ist es etwas umständlich mit dieser Methode eine ONB explizit hinzuschreiben.

Eine Alternative: finde eine Householder Matrix (siehe Wikipedia oder ein gutes Buch zum Thema Numerik (d.h. Bartels)) Q die z.B. e_1 auf $\hat{u} := u/\|u\|$ spiegelt. Dann sind die 2-bis-n-ten Spalten von Q eine ONB von $\operatorname{Sp}(u)^{\perp}$. Eine solche Matrix ist $Q = E_n - 2vv^{\top}$, $v = (e_1 - \hat{u})/\|e_1 - \hat{u}\|$ mit j-ter Spalte $e_j - 2v_jv$.

- (3) $Av = \lambda v, v \neq 0 \Leftrightarrow u(u^{\top}v) = \lambda v, v \neq 0$. Also entweder $\lambda = 0$ und $u^{\top}v = 0$ oder $0 \neq v \propto u$ und $\lambda = u^{\top}u \neq 0$. Die Hauptachsen sind somit u zusammen mit einer ONB von $\operatorname{Sp}(u)^{\perp}$.
- (4) A hat die Eigenwerte $\lambda = 0$ und $u^{\top}u$, wobei $\lambda = 0$ einen (n-1)-dimensionalen Eigenraum hat. Also $\lambda = 0$ hat algebraische Vielfachheit $\geq n-1$ diese Vielfachheit muss eigentlich genau (n-1) sein, da $\lambda = u^{\top}u$ Vielfachheit ≥ 1 hat. Somit ist $\mathcal{X}_A(T) = (T u^{\top}u)T^{n-1}$. Ausserdem

ist A diagonalisierbar und daher (Satz aus der Vorlesung) zerfällt das Minimalpolynom in verschiedene Linearfaktoren. Das Minimalpolynom und \mathcal{X}_A haben die gleichen Nullstellen und somit ist $m_A = (T - u^{\top}u)T$.

Aufgabe 4. (1) Man berechne leicht, dass die Spalten der Matrix orthonormal sind. Ausserdem ist die Determinante gleich 1. Also, die Transformation ist eine Drehung.

- (2) Mit Gauß (wem sonst?) finden wir den Eigenraum $\mathrm{Sp}(1,1,0)^{\top}$ zum Eigenwert 1.
- (3) Zwei orthonormale Vektoren im orthog. Komp. von $\operatorname{Sp}(1,1,0)^{\top}$ sind z.B. $(-1/\sqrt{2},1/\sqrt{2},0)^{\top}$ und $(0,0,1)^{\top}$. Also eine ONB von \mathbb{R}^3 mit einem Bein entlang des Eigenvektors ist $(1/\sqrt{2},1/\sqrt{2},0)^{\top},(-1/\sqrt{2},1/\sqrt{2},0)^{\top},(0,0,1)^{\top}$.

Sei $v_1=(-1/\sqrt{2},1/\sqrt{2},0)^{\top}$ und $v_2=(0,0,1)^{\top}$. Dann berechnen wir leicht $Av_1=-v_2, Av_2=v_1$, also bzgl. der ONB v_1,v_2 von $(\operatorname{Sp}(1,1,0)^{\top})^{\perp}$ hat die Drehung die Matrix

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right),$$

und somit muss der Drehwinkel um $(1,1,0)^{\top}$ gleich $\frac{\pi}{2}$ sein [ok... $\frac{3\pi}{2}$ gegen den Uhrzeigersinn mit v_1, v_2 orientiert wie e_1, e_2 - Herrn Pizarro's Konvention].