Abgabetermin: 17. Mai 2023

Dr. A. Kaltenbach, M. Sc. S. Hermann

Aufgabe 1 (Vollständigkeit von Bochner–Lebesgue-Räumen) (4 Punkte)

Sei $I \subset \mathbb{R}$ ein Intervall, sei X ein Banachraum und $p = \infty$. Zeigen Sie, dass dann $L^p(I;X)$ ein Banachraum ist.

Aufgabe 2 (Dichtheit von Treppenfunktionen) (4 Punkte)

Seien $I \subset \mathbb{R}$ ein Intervall, X ein Banachraum und $1 \leq p < \infty$. Zeigen Sie, dass $\mathcal{T}(I;X)$ dicht in $L^p(I,X)$ ist. Hierbei ist

$$\mathcal{T}(I;X) := \left\{ \sum_{i=1}^{m} x_i \chi_{I_i} \mid m \in \mathbb{N}, \ x_i \in X, \ I_i \subset I \text{ endliches Intervall}, \ i = 1, ..., m \right\}.$$

Aufgabe 3 (Dualraum von $L^p(\Omega)^d$) (4 Punkte)

Sei $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, eine offene Menge und sei $p \in (1, \infty)$ mit dualem Exponenten $q = \frac{p}{p-1}$. Sei $L^p(\Omega)^d$ ausgestattet mit der Norm

$$||u||_{L^p(\Omega)^d} = \left(\sum_{i=1}^d ||u_i||_{L^p(\Omega)}^p\right)^{\frac{1}{p}},$$

wobei $u=(u_1,u_2,...,u_d)\in L^p(\Omega)^d$. Folgern Sie aus dem Darstellungssatz von Riesz in $L^p(\Omega)$, dass für alle $L\in \left(L^p(\Omega)^d\right)^*$ eine eindeutig bestimmte Funktion $v=(v_1,v_2,...,v_d)\in L^q(\Omega)^d$ existiert, sodass

$$L(u) = \int_{\Omega} \sum_{i=1}^{d} v_i(x) u_i(x) dx$$

für alle $u = (u_1, u_2, ..., u_d) \in L^p(\Omega)^d$ und

$$||L||_{(L^p(\Omega)^d)^*} = \left(\sum_{i=1}^d ||v_i||_{L^q(\Omega)}^q\right)^{\frac{1}{q}}$$

gelten.

Aufgabe 4 (Darstellungssatz von Riesz in $W^{1,p}(\Omega)$) (4 Punkte)

Zeigen Sie, dass unter den Voraussetzungen von Aufgabe 3 für jedes beschränkte, lineare Funktional $L \in (W^{1,p}(\Omega))^*$ Funktionen $v_0, v_1, ..., v_d \in L^q(\Omega)$ existieren, sodass

$$L(u) = \int_{\Omega} \left(v_0(x)u(x) + \sum_{i=1}^{d} v_i(x) \frac{\partial u}{\partial x_i}(x) \right) dx$$

für alle $u \in W^{1,p}(\Omega)$ und

$$||L||_{(W^{1,p}(\Omega)^d)^*} = \left(\sum_{i=0}^d ||v_i||_{L^q(\Omega)}^q\right)^{\frac{1}{q}}$$

gelten.