

Numerik 2

Blatt 6 - 03.07.2023

Benötigte Kapitel in 'Numerik 3x9': Kap. 1 - 18 Abgabe: 14.07.2023, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/mitarb/wolffvorbeck/lehre/ss23/num

Aufgabe 1 (4 Punkte).

(a) Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch mit Eigenwerten $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ und sei $v_1 \in \mathbb{R}^n \setminus \{0\}$ ein Eigenwektor zum Eigenwert λ_1 . Zeigen Sie, dass

$$\lambda_2 = \max_{x \neq 0, x \cdot v_1 = 0} \frac{x^\top A x}{\|x\|_2^2}.$$

- (b) Bestimmen Sie die Gerschgorin-Kreise der Matrix $A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$.
- (c) Sei $A \in \mathbb{R}^{n \times n}$ strikt diagonal dominant und symmetrisch. Geben Sie eine obere Schranke der Konditionszahl $\operatorname{cond}_2(A)$ an.

Aufgabe 2 (Essay, 4 Punkte). Schreiben Sie einen kurzen Rückblick von etwa einer Seite zum Thema *Lineare Gleichungssysteme* und erläutern Sie den Zusammenhang zur Numerik.

Aufgabe 3 (4 Punkte). Beweisen Sie Satz 18.3 aus dem Buch Numerik 3x9: Für jede Matrix $Y \in \mathbb{C}^{n \times n}$ existieren eindeutig bestimmte Koeffizienten $B = (b_{lk})_{k,l=0,\dots,n-1} \in \mathbb{C}^{n \times n}$, sodass

$$Y = \sum_{k,l=0}^{n-1} b_{kl} E^{kl}$$

mit der durch die Matrizen $E_{kl} = (\exp(i(j_1k + j_2l)2\pi/n))_{j_1,j_2=0,\dots,n-1} \in \mathbb{C}^{n\times n}$ für $k,l=0,1,\dots,n-1$ definierten Orthogonalbasis bezüglich des Skalarprodukt $E: F = \sum_{j,m=0}^{n-1} E_{jm}\bar{F}_{jm}$. Mit $T_n \in \mathbb{C}^{n\times n}$ definiert durch $(T_n)_{jk} = \exp(ijk2\pi/n), j,k=0,1,\dots,n-1$, gilt

$$Y = \frac{1}{n^2} \bar{T}_n B \bar{T}_n, \quad B = T_n Y T_n.$$

Aufgabe 4 (4 Bonuspunkte). Sei $b \in \mathbb{R}^n$, sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit und sei $\phi(x) = (A^{-1}(b - Ax)) \cdot (b - Ax)$ für alle $x \in \mathbb{R}^n$. Für eine Approximation $\tilde{x} \in \mathbb{R}^n$ wird beim Abstiegsverfahren die Suchrichtung $\tilde{d} = -\nabla \phi(\tilde{x})$ verwendet.

- (a) Zeigen Sie, dass $\tilde{d} = b A\tilde{x}$ gilt und bestimmen Sie die Minimalstelle \tilde{a} der Funktion $t \mapsto \phi(\tilde{x} + t\tilde{d})$.
- (b) Zeigen Sie, dass mit dem optimalen \tilde{a} und $\tilde{x}^{\text{neu}} = \tilde{x} + \tilde{a}\tilde{d}$ gilt

$$\|\tilde{x}^{\text{neu}} - x^*\|_A^2 = \|\tilde{x} - x^*\|_A^2 \left(1 - \frac{\|\tilde{d}\|^4}{(\tilde{d} \cdot A\tilde{d})(\tilde{d} \cdot A^{-1}\tilde{d})}\right).$$

(c) sei $\kappa = \text{cond}_2(A) = \lambda_{\min}^{-1} \lambda_{\max}$ die Konditionszahl von A. Verwenden Sie ohne Beweise die für alle $x \in \mathbb{R}^n \setminus \{0\}$ gültige Abschätzung

$$\frac{(x \cdot Ax)(x \cdot A^{-1}x)}{\left\|x\right\|^4} \le \frac{(\lambda_{\min}^{-1} + \lambda_{\max})^2}{4\lambda_{\min}\lambda_{\max}},$$

um zu beweisen, dass

$$\|\tilde{x}^{\mathrm{neu}} - x^*\|_A \le \left(\frac{\kappa - 1}{\kappa + 1}\right) \|\tilde{x} - x^*\|_A.$$

Aufgabe 5 (1+2+1 Bonuspunkte). Wir betrachten das Minimierungsproblem

$$\min_{x \in \mathbb{R}^2} x_2$$

$$\text{mit} \quad x_1^2 + x_2^2 - 1 = 0.$$

- (a) Formulieren Sie die KKT-Bedingungen für das obige Minimierungsproblem und berechnen Sie alle KKT-Punkte. Überprüfen Sie auch an welchem Punkt die SOSC (Second Order Sufficient Condition) erfüllt ist.
- (b) Formulieren Sie das Newton-Verfahren zur Lösung des obigen Minimierungsproblems in der Form

$$F(z_k) + J(z_k)(z_{k+1} - z_k) = 0, \quad z_k = [x_k, \lambda_k]$$

und geben Sie $F(z_k)$ und $J(z_k)$ in Abhängigkeit von x_k und λ_k an.

(c) Führen Sie einen Schritt im Newton-Verfahren durch. Wählen Sie den Anfangswert $[x_0, \lambda_0] = [0, -1/2, 1]$ und berechnen Sie $[x_1, \lambda_1]$.