Homogenization in the Hencky plasticity setting

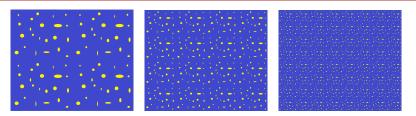
Martin Jesenko

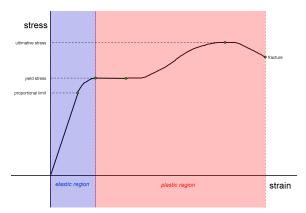
joint work with Bernd Schmidt (Universität Augsburg)

M. Jesenko, B. Schmidt, Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials, arXiv:1703.09443 [math.AP]

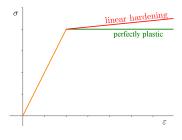
Homogenization Theory and Applications (HomTAp) Berlin, October 4-6, 2017

Homogenization and stress-strain diagram





Hencky plasticity

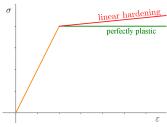


Our model:

- elastic regime with linear dependence,
- ▶ perfectly plastic regime (Hencky plasticity),
- plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Hencky plasticity



Our model:

- elastic regime with linear dependence,
- ► perfectly plastic regime (Hencky plasticity),
- plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

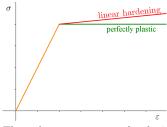
Thus, the energy at zero hardening is given by

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2$$

where $\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T)$, $X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$ and f_{dev} is convex and given by

$$f_{\text{dev}}^*(\sigma_{\text{dev}}) = \begin{cases} \frac{1}{4\mu} |\sigma_{\text{dev}}|^2, & \sigma_{\text{dev}} \in K_{\text{dev}}, \\ \infty, & \sigma_{\text{dev}} \notin K_{\text{dev}}. \end{cases}$$

Hencky plasticity



Our model:

- elastic regime with linear dependence,
- ▶ perfectly plastic regime (Hencky plasticity),
- plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Thus, the energy at zero hardening is given by

$$\mathfrak{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) \ dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\operatorname{tr} X)^2$$

where $\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T)$, $X_{\text{dev}} = X - \frac{\operatorname{tr} X}{n}I$ and f_{dev} is convex and given by

$$f_{\text{dev}}^*(\sigma_{\text{dev}}) = \begin{cases} \frac{1}{4\mu} |\sigma_{\text{dev}}|^2, & \sigma_{\text{dev}} \in K_{\text{dev}}, \\ \infty, & \sigma_{\text{dev}} \notin K_{\text{dev}}. \end{cases}$$

 $f_{\rm dev}$ has linear growth. Thus f grows linearly in the deviatoric direction and quadratically in the trace.

Solvability shown e.g. in [Anzellotti, Giaquinta 82]

Non-homogeneous convex setting considered in [Demengel, Qi 90]

Plan of the talk

- Setting and spaces
- Case with hardening
- Homogenized density
- Recovery sequence
- liminf-inequality

Generalization: non-convex non-homogenous energy

Let $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}$

- ightharpoonup be \mathbb{I}^n -periodic Carathéodory function and
- ▶ have a Hencky plasticity growth, i.e. $\exists \alpha, \beta > 0$ such that for all $x \in \Omega$ and $X \in \mathbb{R}^{n \times n}_{\text{sym}}$

$$\alpha(|X_{\text{dev}}| + (\text{tr } X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\text{tr } X)^2 + 1).$$

Let $\mathcal{F}_{\varepsilon}: L^1(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{\infty\}$ be defined by

$$\mathfrak{F}_{\varepsilon}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \, dx, & u \in ????, \\ \infty, & \text{else.} \end{array} \right.$$

Does $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon}$ Γ -converge and whereto?

Generalization: non-convex non-homogenous energy

Let $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}$

- ightharpoonup be \mathbb{I}^n -periodic Carathéodory function and
- ▶ have a Hencky plasticity growth, i.e. $\exists \alpha, \beta > 0$ such that for all $x \in \Omega$ and $X \in \mathbb{R}^{n \times n}_{\text{sym}}$

$$\alpha(|X_{\text{dev}}| + (\operatorname{tr} X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\operatorname{tr} X)^2 + 1).$$

Let $\mathcal{F}_{\varepsilon}: L^1(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{\infty\}$ be defined by

$$\mathfrak{F}_{\varepsilon}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx, & u \in ????, \\ \infty, & \text{else.} \end{array} \right.$$

Does $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon}$ Γ -converge and whereto?

Conjecture: The limit is of form

$$\mathcal{F}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E}u(x)) \ dx + \text{recession}(\text{singular part}), & u \in \text{wk-cl}(???), \\ \infty, & \text{else.} \end{cases}$$

 \blacksquare Symmetrized gradient must exist (in weak sense), and

$$LD(\Omega;\mathbb{R}^n):=\{u\in L^1(\Omega;\mathbb{R}^n):\mathfrak{E}u\in L^1(\Omega;\mathbb{R}^{n\times n})\},\quad \|u\|_{LD}:=\|u\|_{L^1}+\|\mathfrak{E}u\|_{L^1}.$$

■ Symmetrized gradient must exist (in weak sense), and

$$LD(\Omega;\mathbb{R}^n):=\{u\in L^1(\Omega;\mathbb{R}^n):\mathfrak{E}u\in L^1(\Omega;\mathbb{R}^{n\times n})\},\quad \|u\|_{LD}:=\|u\|_{L^1}+\|\mathfrak{E}u\|_{L^1}.$$

$$LU(\Omega;\mathbb{R}^n) := \{ u \in LD(\Omega;\mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad \|u\|_{LU} := \|u\|_{LD} + \|\text{div } u\|_{L^2}.$$

Domain

■ Symmetrized gradient must exist (in weak sense), and

$$LD(\Omega;\mathbb{R}^n) := \{u \in L^1(\Omega;\mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega;\mathbb{R}^{n \times n})\}, \quad \|u\|_{LD} := \|u\|_{L^1} + \|\mathfrak{E}u\|_{L^1}.$$

 \blacksquare The natural domain for \mathcal{F} is

$$LU(\Omega; \mathbb{R}^n) := \{ u \in LD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad \|u\|_{LU} := \|u\|_{LD} + \|\text{div } u\|_{L^2}.$$

■ Due to the lack of weak compactness, we introduce the space $BD(\Omega; \mathbb{R}^n)$ of all $u \in L^1(\Omega; \mathbb{R}^n)$ such that $Eu \in M(\Omega; \mathbb{R}^{n \times n})$ with the norm

$$||u||_{BD} = ||u||_{L^1} + ||Eu||_M.$$

$$Eu = \mathfrak{E}u \ \mathcal{L}^n + E^s u.$$

Symmetrized gradient must exist (in weak sense), and

$$LD(\Omega; \mathbb{R}^n) := \{ u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n}) \}, \quad \|u\|_{LD} := \|u\|_{L^1} + \|\mathfrak{E}u\|_{L^1}.$$

2 The natural domain for \mathcal{F} is

$$LU(\Omega; \mathbb{R}^n) := \{ u \in LD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad \|u\|_{LU} := \|u\|_{LD} + \|\text{div } u\|_{L^2}.$$

■ Due to the lack of weak compactness, we introduce the space $BD(\Omega; \mathbb{R}^n)$ of all $u \in L^1(\Omega; \mathbb{R}^n)$ such that $Eu \in M(\Omega; \mathbb{R}^{n \times n})$ with the norm

$$\|u\|_{BD} = \|u\|_{L^1} + \|Eu\|_M.$$

Then

$$Eu = \mathfrak{E}u \ \mathcal{L}^n + E^s u.$$

4 Moreover,

$$U(\Omega; \mathbb{R}^n) := \{ u \in BD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad \|u\|_U := \|u\|_{BD} + \|\text{div } u\|_{L^2}.$$

Symmetrized gradient must exist (in weak sense), and

$$LD(\Omega;\mathbb{R}^n):=\{u\in L^1(\Omega;\mathbb{R}^n):\mathfrak{E}u\in L^1(\Omega;\mathbb{R}^{n\times n})\},\quad \|u\|_{LD}:=\|u\|_{L^1}+\|\mathfrak{E}u\|_{L^1}.$$

2 The natural domain for \mathcal{F} is

$$LU(\Omega; \mathbb{R}^n) := \{ u \in LD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad ||u||_{LU} := ||u||_{LD} + ||\text{div } u||_{L^2}.$$

■ Due to the lack of weak compactness, we introduce the space $BD(\Omega; \mathbb{R}^n)$ of all $u \in L^1(\Omega; \mathbb{R}^n)$ such that $Eu \in M(\Omega; \mathbb{R}^{n \times n})$ with the norm

$$||u||_{BD} = ||u||_{L^1} + ||Eu||_M.$$

Then

$$Eu = \mathfrak{E}u \ \mathcal{L}^n + E^s u.$$

Moreover,

$$U(\Omega; \mathbb{R}^n) := \{ u \in BD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad \|u\|_U := \|u\|_{BD} + \|\text{div } u\|_{L^2}.$$

 $c \geq 0$ convex function with linear upper bound. c-strict convergence:

- ▶ strict convergence: $u_j \to u$ in $L^1(\Omega; \mathbb{R}^n)$ and $|Eu_j|(\Omega) \to |Eu|(\Omega)$,
- $ightharpoonup \operatorname{div} u_i \to \operatorname{div} u \text{ in } L^2(\Omega),$
- ▶ $\int_{\Omega} c(E_{\text{dev}}u_j) \to \int_{\Omega} c(E_{\text{dev}}u)$ and $\int_{\Omega} c(Eu_j) \to \int_{\Omega} c(Eu)$.

Case with hardening

Consider also
$$f^{(\delta)}(x,X) = f(x,X) + \delta |X_{\text{dev}}|^2$$
 and
$$\mathcal{F}_{\varepsilon}^{(\delta)}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f^{(\delta)}(\frac{x}{\varepsilon},\mathfrak{E}u(x)) \ dx, & u \in W^{1,2}(\Omega;\mathbb{R}^n), \\ \infty, & \text{else.} \end{array} \right.$$

For $\delta>0$ the densities have a quadratic growth in $|X_{\mathrm{sym}}|$. The functionals are therefore of Gårding type ([Schmidt, MJ 14]).

Case with hardening

Consider also $f^{(\delta)}(x, X) = f(x, X) + \delta |X_{\text{dev}}|^2$ and

$$\mathfrak{F}_{\varepsilon}^{(\delta)}(u) := \left\{ \begin{array}{cc} \int_{\Omega} f^{(\delta)}(\frac{x}{\varepsilon},\mathfrak{E}u(x)) \ dx, & u \in W^{1,2}(\Omega;\mathbb{R}^n), \\ \infty, & \text{else.} \end{array} \right.$$

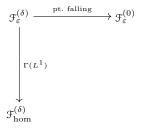
For $\delta > 0$ the densities have a quadratic growth in $|X_{\rm sym}|$. The functionals are therefore of Gårding type ([Schmidt, MJ 14]). Hence,

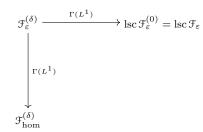
$$\Gamma(L^2)\text{-}\lim_{\varepsilon\to 0}\mathcal{F}_\varepsilon^{(\delta)}=\mathcal{F}_{\mathrm{hom}}^{(\delta)}$$

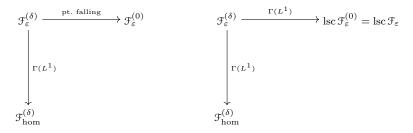
where $\mathcal{F}_{\text{hom}}^{(\delta)}$ has domain $W^{1,2}(\Omega;\mathbb{R}^n)$ and has the density

$$f_{\mathrm{hom}}^{(\delta)}(X) = \inf_{k \in \mathbb{N}} \inf_{\varphi \in W_0^{1,2}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f^{(\delta)}(x, X + \mathfrak{C}\varphi(x)) \ dx.$$

In fact, it is also Γ -convergence in L^1 because of the quadratic growth of the density and Poincaré's and Korn's inequality.







Let

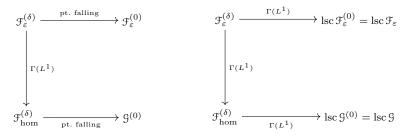
$$f_{\mathrm{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\infty}^{\infty}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f \big(x, X + \mathfrak{E} \varphi(x) \big) \ dx.$$

Clearly

$$f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).$$

Define

$$g^{(0)}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E}u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else}, \end{cases}$$



Let

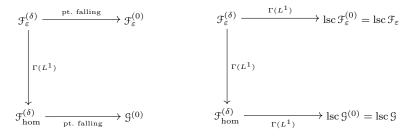
$$f_{\mathrm{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\infty}^{\infty}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) \ dx.$$

Clearly

$$f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).$$

Define

$$\mathfrak{G}^{(0)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f_{\text{hom}}(\mathfrak{E}u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else}, \end{array} \right.$$



Let

$$f_{\mathrm{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\infty}^{\infty}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) \ dx.$$

Clearly

$$f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).$$

Define

$$\mathfrak{G}^{(0)}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f_{\text{hom}}(\mathfrak{E}u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{array} \right.$$

Notice

$$\mathcal{F}_{\mathrm{hom}}^{(\delta)} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \quad \text{and therefore} \quad \mathrm{lsc}\, \mathcal{G} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}.$$

Homogenized density

The homogenized density

$$f_{\mathrm{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_{\infty}^{\infty}(\mathbb{K}^{ln}; \mathbb{R}^n)} \frac{1}{k^n} \int_{k \mathbb{I}^n} f\big(x, X + \mathfrak{C}\varphi(x)\big) \ dx$$

- ▶ is symmetric-quasiconvex,
- ▶ has Hencky plasticity growth,
- $(f^{\text{qcls}})_{\text{hom}} = f_{\text{hom}}.$

Subadditive \mathbb{Z}^n -invariant processes [Akcoglu, Krengel 80], [Licht, Michaille 02]:

$$\inf_{k\in\mathbb{N}}\ldots=\lim_{k\to\infty}\ldots$$

For every open bounded convex set V and $\varepsilon_k \searrow 0$

$$\begin{array}{ll} f_{\mathrm{hom}}(X) & = & \lim_{k \to \infty} \inf_{\varphi \in C_c^{\infty}(\varepsilon_k^{-1}V;\mathbb{R}^n)} \frac{1}{|\varepsilon_k^{-1}V|} \int_{\varepsilon_k^{-1}V} f(x,X + \mathfrak{C}\varphi(x)) \ dx \\ & = & \lim_{k \to \infty} \inf_{\varphi \in LU_0(\varepsilon_k^{-1}V;\mathbb{R}^n)} \frac{1}{|\varepsilon_k^{-1}V|} \int_{\varepsilon_k^{-1}V} f(x,X + \mathfrak{C}\varphi(x)) \ dx. \end{array}$$

Reshetnyak continuity theorem (Kristensen, Rindler 10)

Let $f \in \mathbf{E}(\Omega; \mathbb{R}^N)$, and

$$\mu_j \stackrel{*}{\rightharpoonup} \mu \quad in \ M(\Omega; \mathbb{R}^N) \quad and \quad \langle \mu_j \rangle(\Omega) \to \langle \mu \rangle(\Omega).$$

Then

$$\begin{split} &\lim_{j\to\infty}\left[\int_{\Omega}f\left(x,\frac{d\mu_{j}^{a}}{d\mathcal{L}^{n}}(x)\right)\ dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu_{j}^{s}}{d|\mu_{j}^{s}|}(x)\right)\ d|\mu_{j}^{s}|(x)\right]=\\ &=\int_{\Omega}f\left(x,\frac{d\mu^{a}}{d\mathcal{L}^{n}}(x)\right)\ dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu^{s}}{d|\mu^{s}|}(x)\right)\ d|\mu^{s}|(x). \end{split}$$

$$\langle A \rangle := \sqrt{1 + |A|^2}$$

 $\mathbf{E}(\Omega; \mathbb{R}^N) = \{\text{functions extendable to } \infty\}$

$$g^{\infty}(X) = \limsup_{Y \to X, \ t \to \infty} \frac{g(tY)}{t}$$

Theorem

 $LU(\Omega; \mathbb{R}^n) \cap C^{\infty}(\Omega; \mathbb{R}^n)$ is dense in $U(\Omega; \mathbb{R}^n)$ in $\langle \cdot \rangle$ -strict topology.

Theorem

Let $f: \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- ▶ is symmetric-rank-one-convex in the second variable,
- ▶ satisfies the Hencky growth condition.

Denote $f_{\text{dev}} := f|_{\Omega \times \mathbb{R}_{\text{dev}}^{n \times n}}$. Suppose that

$$(f_{\text{dev}})^{\infty}(x_0, P_0) = \limsup_{P \to P_0, t \to \infty} \frac{f_{\text{dev}}(x_0, tP)}{t}$$

is for every fixed $P_0 \in \mathbb{R}_{\mathrm{dev}}^{n \times n}$ a continuous function of x_0 . Then the functional

$$\mathcal{F}(u) = \int_{\Omega} f\left(x, \mathfrak{E}u(x)\right) \ dx + \int_{\Omega} (f_{\text{dev}})^{\infty} \left(x, \frac{dE^{s}u}{d|E^{s}u|}(x)\right) \ d|E^{s}u|(x)$$

is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

Theorem

Let $f: \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- ▶ is symmetric-rank-one-convex in the second variable,
- ▶ satisfies the Hencky growth condition.

Denote $f_{\text{dev}} := f|_{\Omega \times \mathbb{R}_{\text{dev}}^{n \times n}}$. Suppose that

$$(f_{\text{dev}})^{\infty}(x_0, P_0) = \limsup_{P \to P_0, t \to \infty} \frac{f_{\text{dev}}(x_0, tP)}{t}$$

is for every fixed $P_0 \in \mathbb{R}_{dev}^{n \times n}$ a continuous function of x_0 . Then the functional

$$\mathcal{F}(u) = \int_{\Omega} f \left(x, \mathfrak{E} u(x) \right) \; dx + \int_{\Omega} (f_{\mathrm{dev}})^{\infty} \left(x, \, \frac{dE^s u}{d | E^s u |}(x) \right) \; d | E^s u |(x)$$

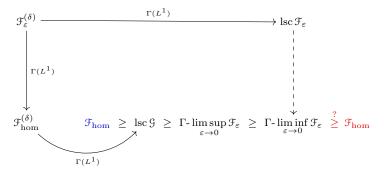
is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

Ingredients of the proof:

- ▶ Special Lipschitz continuity in the trace direction
- ▶ Approximation of functions $\geq -\alpha(1+|X|)$ by functions from $\mathbf{E}(\Omega; \mathbb{R}^N)$ [Alibert, Bouchitté 97]
- ▶ Rank-one theorem (De Philippis, Rindler 16): Let $u \in BD(\Omega; \mathbb{R}^n)$. Then, for $|E^s u|$ -a.e. $x \in \Omega$, there exist $a(x), b(x) \in \mathbb{R}^n \setminus \{0\}$ such that

$$\frac{dE^s u}{d|E^s u|} = a(x) \odot b(x) = \frac{1}{2} (a(x) \otimes b(x) + b(x) \otimes a(x)).$$

We now have



with

$$\mathcal{F}_{\mathrm{hom}}(u)\!:=\!\begin{cases} \int_{\Omega} f_{\mathrm{hom}}\!\left(\mathfrak{E}u(x)\right) dx + \int_{\Omega} (f_{\mathrm{hom}})^{\#}\!\left(\frac{dE^{s}u}{d|E^{s}u|}(x)\right) d|E^{s}u|(x), & u\in U(\Omega;\mathbb{R}^{n}),\\ \infty, & \mathrm{else}. \end{cases}$$

and

$$g^{\#}(X) := \limsup_{t \to \infty} \frac{g(tX)}{t}.$$

We may suppose $\liminf_{j \to \infty} \mathfrak{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

By stepwise extracting appropriate subsequences we may get a (not relabeled) sequence such that

- ▶ $\lim_{j\to\infty} \mathfrak{F}_{\varepsilon_j}(u_j)$ equals the lim inf above with all $u_j \in LU(\Omega; \mathbb{R}^n)$,
- ▶ $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- ▶ and $\mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega; \mathbb{R}^n)$.

We may suppose $\liminf_{j \to \infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty$. Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

By stepwise extracting appropriate subsequences we may get a (not relabeled) sequence such that

- ▶ $\lim_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j)$ equals the liminf above with all $u_j \in LU(\Omega; \mathbb{R}^n)$,
- ▶ $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q .
- ▶ and $\mu_i \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega; \mathbb{R}^n)$.

Let

$$\mu = g\mathcal{L}^n + \mu^s.$$

Goal:

▶ Regular points: for a.e. $x_0 \in \Omega$

$$g(x_0) = \lim_{\rho \to 0} \lim_{j \to \infty} \frac{\mu_j(B_\rho(x_0))}{|B_\rho(x_0)|} \ge f_{\text{hom}}(\mathfrak{E}u(x_0)).$$

▶ Singular points:

$$\mu^s \ge (f_{\text{hom}})^\# \left(\frac{dE^s u}{d|E^s u|}\right) |E^s u|.$$

Theorem

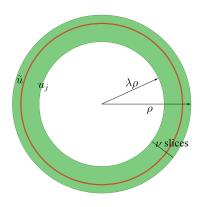
Every $u \in BD(\Omega; \mathbb{R}^n)$ is L^q -differentiable a.e. for any $1 \leq q \leq \frac{n}{n-1}$, i.e., there exists a negligible set $N \subset \Omega$ such that for all $x_0 \in \Omega \setminus N$ there exists a matrix $L_{x_0} \in \mathbb{R}^{n \times n}$ such that

$$\lim_{r \to 0} \frac{1}{r^n} \int_{B_r(x_0)} \left| \frac{u(x) - u(x_0) - L_{x_0}(x - x_0)}{r} \right|^{\frac{n}{n-1}} dx = 0.$$

Therefore, u is a.e. approximately differentiable with $L_{x_0} = \nabla u(x_0)$ being the approximate differential.

 Proof: q=1by [Ambrosio, Coscia, Dal Maso 97] + (Korn-) Poincaré inequality for $BD(\Omega;\mathbb{R}^n)$

Regular points: De Giorgi's slicing method



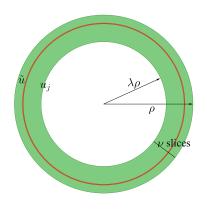
Let us take and fix any x_0 where the function u is approximately differentiable and define

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) \ (x - x_0).$$

Usually

$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

Regular points: De Giorgi's slicing method



Let us take and fix any x_0 where the function u is approximately differentiable and define

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) (x - x_0).$$

Usually

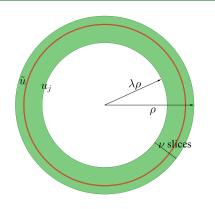
$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

But

$$\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + \nabla \varphi_i \cdot (u_j - \tilde{u})$$

and there in no control on the last term L^2 .

Regular points: De Giorgi's slicing method meets Bogovskii's operator



Let us take and fix any x_0 where the function u is approximately differentiable and define

$$\tilde{u}(x) := u(x_0) + \nabla u(x_0) (x - x_0).$$

Usually

$$\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).$$

But

$$\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + \nabla \varphi_i \cdot (u_j - \tilde{u})$$

and there in no control on the last term L^2 .

$$\zeta_{j,i} := \text{average of } \nabla \varphi_i \cdot (u_j - \tilde{u}) \text{ in } B_i \setminus B_{i-1}.$$

By the result of Bogovskii, there exist $z_{j,i} \in W_0^{1,q}(B_i \setminus \overline{B_{i-1}})$ such that

$$\operatorname{div} z_{j,i} = -\nabla \varphi_i \cdot (u_j - \tilde{u}) + \zeta_{j,i}$$

with

$$\|z_{j,i}\|_{W^{1,q}(B_i\setminus\overline{B_{i-1}})}\leq \tfrac{C\nu}{(1-\lambda)\rho}\|u_j-\tilde{u}\|_{L^q(B_i\setminus\overline{B_{i-1}})}.$$

Regular points

Now define
$$u_{j,i}:=\tilde{u}_{j,i}+z_{j,i}\in LU(\Omega;\mathbb{R}^n)$$
. Notice that
$$u_{j,i}-\tilde{u}=\varphi_i(u_j-\tilde{u})+z_{j,i}\in LU_0(B_\rho(x_0);\mathbb{R}^n).$$

Regular points

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega; \mathbb{R}^n)$. Notice that

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ \\ & \leq & \lim_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)) \ dx \end{array}$$

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

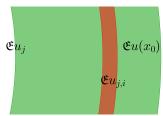
$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0),\mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)) \ dx \end{array}$$

Averaging:
$$f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$$

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

$$\begin{array}{lll} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)) \ dx \end{array}$$

Averaging:
$$f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$$

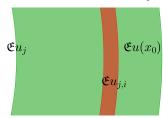


$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0),\mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)) \ dx \end{array}$$

Averaging: $f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$



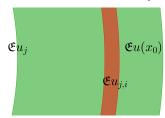
► First term: ✓

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \lim_{j \to \infty} \inf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) \ dx \end{array}$$

Averaging: $f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$



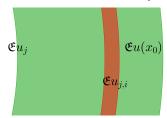
- ► First term: ✓
- ▶ Third term: $\lambda \nearrow 1$

$$u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$$

Then

$$\begin{array}{lcl} f_{\mathrm{hom}}(\mathfrak{E}u(x_0)) & = & \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)) \ dx \\ & \leq & \lim_{j \to \infty} \inf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) \ dx \end{array}$$

Averaging: $f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.$



- ► First term: ✓
- ▶ Third term: $\lambda \nearrow 1$
- ightharpoonup Second term: L^q -differentiability

Asymptotic convexity

We suppose that for every $\eta > 0$ there are

- $\beta_{\eta} > 0$
- ▶ a Carathéodory function $c^n : \mathbb{R}^n \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second,

such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}_{\text{sym}}^{n \times n}$

$$|f(x,X) - c^{\eta}(x,X)| \le \eta(|X_{\text{dev}}| + (\operatorname{tr} X)^2) + \beta_{\eta}.$$

We will refer to this property as asymptotic convexity.

Let us notice that for f in our setting we may even suppose

- c^{η} to be non-negative with $c^{\eta}(x,0) = 0$ for every $x \in \mathbb{R}^n$,
- ▶ dom $(c^*(x, _))$ to be closed for a.e. $x \in \mathbb{R}^n$.

lim-inf inequality Asymptotic convexity

We suppose that for every $\eta > 0$ there are

- $\beta_{\eta} > 0$
- ▶ a Carathéodory function $c^n : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second,

such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}_{\text{sym}}^{n \times n}$

$$|f(x,X) - c^{\eta}(x,X)| \le \eta(|X_{\text{dev}}| + (\operatorname{tr} X)^2) + \beta_{\eta}.$$

We will refer to this property as asymptotic convexity.

Let us notice that for f in our setting we may even suppose

- c^{η} to be non-negative with $c^{\eta}(x,0) = 0$ for every $x \in \mathbb{R}^n$,
- ▶ dom $(c^*(x, _))$ to be closed for a.e. $x \in \mathbb{R}^n$.

[Demengel, Qi 90]: For such convex function c

$$\Gamma\text{-}\lim_{\varepsilon\to 0} {\mathcal C}_\varepsilon = {\mathcal C}_{\text{hom}} \quad \text{with} \quad {\mathcal C}_{\text{hom}}(u) := \left\{ \begin{array}{cc} \int_\Omega c_{\text{hom}}\big(Eu(x)\big), & u\in U(\Omega;\mathbb{R}^n), \\ \infty, & \text{else}, \end{array} \right.$$

where
$$c_{\text{hom}}(X) = \inf_{\varphi \in LU_{\text{per}}(\mathbb{T}^n; \mathbb{R}^n)} \int_{\mathbb{T}^n} c(x, X + \mathfrak{E}\varphi(x)) dx$$
 and

$$c_{\mathrm{hom}}\big(Eu(x)\big) = c_{\mathrm{hom}}\big(\mathfrak{E}u(x)\big) \ dx + (c_{\mathrm{hom}})^{\#}\left(\frac{dE^su}{d|E^su|}(x)\right)d|E^su|(x).$$

Singular points

We have

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

We may suppose

- ▶ $\lim_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j)$ equals the liminf above with all $u_j \in LU(\Omega; \mathbb{R}^n)$,
- ▶ $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- $\mu_j \stackrel{*}{\rightharpoonup} \mu \text{ in } M(\Omega; \mathbb{R}^n),$
- $(|\mathfrak{E}_{\text{dev}}u_j| + (\text{div } u_j)^2) \mathcal{L}^n \stackrel{*}{\rightharpoonup} \sigma \text{ in } M(\Omega).$

We have

$$\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E}u_j(\cdot))\mathcal{L}^n.$$

We may suppose

- ▶ $\lim_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j)$ equals the liminf above with all $u_j \in LU(\Omega; \mathbb{R}^n)$,
- ▶ $u_j \to u$ in $L^q(\Omega; \mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- $\mu_i \stackrel{*}{\rightharpoonup} \mu \text{ in } M(\Omega; \mathbb{R}^n),$
- $(|\mathfrak{E}_{\text{dev}}u_j| + (\text{div } u_j)^2) \mathcal{L}^n \stackrel{*}{\rightharpoonup} \sigma \text{ in } M(\Omega).$

For each $\eta > 0$

$$f(x,X) \geq c^{\eta}(x,X) - \eta(|X_{\text{dev}}| + (\operatorname{tr} X)^{2}) - \beta_{\eta}$$

$$\mu \geq c^{\eta}_{\text{hom}}(Eu) - \eta \sigma - \beta_{\eta} \mathcal{L}^{n}$$

$$\mu^{s} \geq (c^{\eta}_{\text{hom}})^{\#}(\frac{dE^{s}u}{d|E^{s}u|})|E^{s}u| - \eta \sigma^{s}$$

Since

$$\lim_{\eta \to 0} (c_{\text{hom}}^{\eta})^{\#}(X) = (f_{\text{hom}})^{\#}(X),$$

and

$$\mu^s \ge (f_{\text{hom}})^\# \left(\frac{dE^s u}{d|E^s u|}\right) |E^s u|.$$

Theorem

Let us have a Carathéodory function $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ that

- is \mathbb{I}^n -periodic in the first variable,
- ▶ has Hencky plasticity growth.

Let us denote

$$\mathcal{F}_{\varepsilon}(u) := \left\{ \begin{array}{ll} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) \ dx, & u \in LU(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{array} \right.$$

and

$$\mathcal{F}_{\mathrm{hom}}(u) := \begin{cases} \int_{\Omega} f_{\mathrm{hom}} \big(\mathfrak{E} u(x) \big) \; dx + \int_{\Omega} (f_{\mathrm{hom}})^{\#} \big(\frac{dE^{s}u}{d|E^{s}u|}(x) \big) \; d|E^{s}u|(x), & u \in U(\Omega; \mathbb{R}^{n}), \\ \infty, & \text{else.} \end{cases}$$

Then

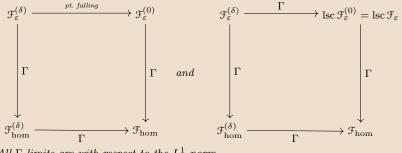
$$\Gamma(L^1)$$
- $\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \le \mathcal{F}_{\text{hom}}$,

while for $u \in LU(\Omega; \mathbb{R}^n)$ even

$$\Gamma(L^1)$$
- $\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u) = \mathcal{F}_{\text{hom}}(u)$.

The latter holds for all $u \in L^1(\Omega; \mathbb{R}^n)$ if f is asymptotically convex.

With assumptions and denotations as above, including the asymptotic convexity, the following diagrams commute:



All Γ -limits are with respect to the L^1 -norm.

Thank you for your attention