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Homogenization and stress-strain diagram
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Hencky plasticity

Our model:

I elastic regime with linear dependence,

I perfectly plastic regime (Hencky
plasticity),

I plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, . . . ).

Thus, the energy at zero hardening is given by

F(u) =

∫
Ω
f(Eu(x)) dx with f(X) = fdev(Xdev) +

κ
2

(trX)2

where Eu(x) = 1
2

(∇u(x) +∇u(x)T ), Xdev = X − trX
n
I and fdev is convex and

given by

f∗dev(σdev) =

{ 1
4µ
|σdev|2, σdev ∈ Kdev,

∞, σdev 6∈ Kdev.

fdev has linear growth. Thus f grows linearly in the deviatoric direction
and quadratically in the trace.

Solvability shown e.g. in [Anzellotti, Giaquinta 82]

Non-homogeneous convex setting considered in [Demengel, Qi 90]
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Plan of the talk

Setting and spaces

Case with hardening

Homogenized density

Recovery sequence

liminf-inequality
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Setting

Generalization: non-convex non-homogenous energy

Let f : Rn × Rn×nsym → R
I be In-periodic Carathéodory function and

I have a Hencky plasticity growth, i.e. ∃α, β > 0 such that for all x ∈ Ω and
X ∈ Rn×nsym

α
(
|Xdev|+ (trX)2

)
≤ f(x,X) ≤ β

(
|Xdev|+ (trX)2 + 1

)
.

Let Fε : L1(Ω;Rn)→ R ∪ {∞} be defined by

Fε(u) :=

{ ∫
Ω f
(
x
ε
,Eu(x)

)
dx, u ∈ ???,

∞, else.

Does {Fε}ε Γ-converge and whereto?

Conjecture: The limit is of form

F(u) :=

{ ∫
Ω fhom

(
Eu(x)

)
dx+ recession(singular part), u ∈ wk-cl(???),

∞, else.
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Setting
Domain

1 Symmetrized gradient must exist (in weak sense), and

LD(Ω;Rn) := {u ∈ L1(Ω;Rn) : Eu ∈ L1(Ω;Rn×n)}, ‖u‖LD := ‖u‖L1 + ‖Eu‖L1 .

2 The natural domain for F is

LU(Ω;Rn) := {u ∈ LD(Ω;Rn) : div u ∈ L2(Ω)}, ‖u‖LU := ‖u‖LD + ‖div u‖L2 .

3 Due to the lack of weak compactness, we introduce the space BD(Ω;Rn) of all
u ∈ L1(Ω;Rn) such that Eu ∈M(Ω;Rn×n) with the norm

‖u‖BD = ‖u‖L1 + ‖Eu‖M .

Then
Eu = Eu Ln + Esu.

4 Moreover,

U(Ω;Rn) := {u ∈ BD(Ω;Rn) : div u ∈ L2(Ω)}, ‖u‖U := ‖u‖BD + ‖div u‖L2 .

c ≥ 0 convex function with linear upper bound. c-strict convergence:

I strict convergence: uj → u in L1(Ω;Rn) and |Euj |(Ω) → |Eu|(Ω),

I div uj → div u in L2(Ω),

I
∫
Ω
c(Edevuj) →

∫
Ω
c(Edevu) and

∫
Ω
c(Euj) →

∫
Ω
c(Eu).
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Case with hardening

Consider also f (δ)(x,X) = f(x,X) + δ|Xdev|2 and

F
(δ)
ε (u) :=

{ ∫
Ω f

(δ)(x
ε
,Eu(x)) dx, u ∈W 1,2(Ω;Rn),
∞, else.

For δ > 0 the densities have a quadratic growth in |Xsym|. The functionals are
therefore of G̊arding type ([Schmidt, MJ 14]).

Hence,

Γ(L2)- lim
ε→0

F
(δ)
ε = F

(δ)
hom

where F
(δ)
hom has domain W 1,2(Ω;Rn) and has the density

f
(δ)
hom(X) = inf

k∈N
inf

ϕ∈W1,2
0 (kIn;Rn)

1

kn

∫
kIn

f (δ)(x,X + Eϕ(x)) dx.

In fact, it is also Γ-convergence in L1 because of the quadratic growth of the
density and Poincaré’s and Korn’s inequality.
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density and Poincaré’s and Korn’s inequality.

7 / 21



Diagrams

F
(δ)
ε F

(0)
ε

F
(δ)
hom

pt. falling

Γ(L1)

F
(δ)
ε lscF

(0)
ε = lscFε

F
(δ)
hom

Γ(L1)

Γ(L1)

Let

fhom(X) := inf
k∈N

inf
ϕ∈C∞c (kIn;Rn)

1

kn

∫
kIn

f
(
x,X + Eϕ(x)

)
dx.

Clearly

fhom(X) = inf
δ>0

f
(δ)
hom(X).

Define

G(0)(u) :=

{ ∫
Ω fhom

(
Eu(x)

)
, u ∈ LU(Ω;Rn)∩W 1,2(Ω;Rn),

∞, else,

Notice
F

(δ)
hom ≥ Γ- lim sup

ε→0
Fε and therefore lscG ≥ Γ- lim sup

ε→0
Fε.
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Homogenized density

The homogenized density

fhom(X) := inf
k∈N

inf
ϕ∈C∞c (kIn;Rn)

1

kn

∫
kIn

f
(
x,X + Eϕ(x)

)
dx

I is symmetric-quasiconvex,

I has Hencky plasticity growth,

I (fqcls)hom = fhom.

Subadditive Zn-invariant processes [Akcoglu, Krengel 80], [Licht, Michaille 02]:

inf
k∈N

. . . = lim
k→∞

. . .

For every open bounded convex set V and εk ↘ 0

fhom(X) = lim
k→∞

inf
ϕ∈C∞c (ε−1

k
V ;Rn)

1

|ε−1
k V |

∫
ε−1
k
V
f(x,X + Eϕ(x)) dx

= lim
k→∞

inf
ϕ∈LU0(ε−1

k
V ;Rn)

1

|ε−1
k V |

∫
ε−1
k
V
f(x,X + Eϕ(x)) dx.
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Recovery sequence
Idea for a recovery sequence for lscG

Reshetnyak continuity theorem (Kristensen, Rindler 10)

Let f ∈ E(Ω;RN ), and

µj
∗
⇀ µ in M(Ω;RN ) and 〈µj〉(Ω)→ 〈µ〉(Ω).

Then

lim
j→∞

[∫
Ω
f

(
x,
dµaj

dLn
(x)

)
dx+

∫
Ω
f∞

(
x,

dµsj

d|µsj |
(x)

)
d|µsj |(x)

]
=

=

∫
Ω
f

(
x,
dµa

dLn
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x).

〈A〉 :=
√

1 + |A|2

E(Ω;RN ) = {functions extendable to ∞}

g∞(X) = lim sup
Y→X, t→∞

g(tY )

t

Theorem

LU(Ω;Rn) ∩ C∞(Ω;Rn) is dense in U(Ω;Rn) in 〈·〉-strict topology.

10 / 21



Recovery sequence
〈·〉-strict continuity

Theorem

Let f : Ω× Rn×nsym → R be a continuous function that

I is symmetric-rank-one-convex in the second variable,

I satisfies the Hencky growth condition.

Denote fdev := f |
Ω×Rn×n

dev
. Suppose that

(fdev)∞(x0, P0) = lim sup
P→P0,t→∞

fdev(x0, tP )

t

is for every fixed P0 ∈ Rn×ndev a continuous function of x0. Then the functional

F(u) =

∫
Ω
f
(
x,Eu(x)

)
dx+

∫
Ω

(fdev)∞
(
x, dE

su
d|Esu| (x)

)
d|Esu|(x)

is 〈·〉-strictly continuous on U(Ω;Rn).

Ingredients of the proof:
I Special Lipschitz continuity in the trace direction
I Approximation of functions ≥ −α(1 + |X|) by functions from E(Ω;RN )

[Alibert, Bouchitté 97]
I Rank-one theorem (De Philippis, Rindler 16): Let u ∈ BD(Ω;Rn). Then, for
|Esu|-a.e. x ∈ Ω, there exist a(x), b(x) ∈ Rn \ {0} such that

dEsu

d|Esu|
= a(x)� b(x) = 1

2
(a(x)⊗ b(x) + b(x)⊗ a(x)).
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lim-inf inequality

We now have

F
(δ)
ε lscFε

F
(δ)
hom Fhom ≥ lscG ≥ Γ- lim sup

ε→0
Fε ≥ Γ- lim inf

ε→0
Fε

?
≥ Fhom

Γ(L1)

Γ(L1)

Γ(L1)

with

Fhom(u) :=

{∫
Ω fhom

(
Eu(x)

)
dx+

∫
Ω(fhom)#

(
dEsu
d|Esu| (x)

)
d|Esu|(x), u ∈ U(Ω;Rn),

∞, else.

and

g#(X) := lim sup
t→∞

g(tX)

t
.
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lim-inf inequality

We may suppose lim infj→∞ Fεj (uj) <∞. Let us fix some 1 < q < n
n−1

and

define measures
µj := f( ·

εj
,Euj(·))Ln.

By stepwise extracting appropriate subsequences we may get a (not relabeled)
sequence such that

I limj→∞ Fεj (uj) equals the lim inf above with all uj ∈ LU(Ω;Rn),

I uj → u in Lq(Ω;Rn) due to the lower bound on f and since LU is compactly
embedded in Lq ,

I and µj
∗
⇀ µ in M(Ω;Rn).

Let
µ = gLn + µs.

Goal:

I Regular points: for a.e. x0 ∈ Ω

g(x0) = lim
ρ→0

lim
j→∞

µj(Bρ(x0))

|Bρ(x0)|
≥ fhom(Eu(x0)).

I Singular points:
µs ≥ (fhom)#

(
dEsu
d|Esu|

)
|Esu|.
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lim-inf inequality
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lim-inf inequality
Lq-differentiability

Theorem

Every u ∈ BD(Ω;Rn) is Lq-differentiable a.e. for any 1 ≤ q ≤ n
n−1

, i.e., there

exists a negligible set N ⊂ Ω such that for all x0 ∈ Ω \N there exists a matrix
Lx0 ∈ Rn×n such that

lim
r→0

1

rn

∫
Br(x0)

∣∣∣∣u(x)− u(x0)− Lx0 (x− x0)

r

∣∣∣∣ n
n−1

dx = 0.

Therefore, u is a.e. approximately differentiable with Lx0 = ∇u(x0) being the
approximate differential.

Proof: q = 1 by [Ambrosio, Coscia, Dal Maso 97] + (Korn-)Poincaré inequality for
BD(Ω;Rn)
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lim-inf inequality
Regular points: De Giorgi’s slicing method

Let us take and fix any x0 where the func-
tion u is approximately differentiable and
define

ũ(x) := u(x0) +∇u(x0) (x− x0).

Usually

ũj,i := ũ+ ϕi(uj − ũ) ∈ L1(Ω;Rn).

But

div ũj,i = (1− ϕi) div ũ+ ϕi div uj+

+∇ϕi · (uj − ũ)

and there in no control on the last term
L2.

ζj,i := average of ∇ϕi · (uj − ũ) in Bi \Bi−1.

By the result of Bogovskĭi, there exist zj,i ∈W 1,q
0 (Bi \Bi−1) such that

div zj,i = −∇ϕi · (uj − ũ) + ζj,i

with
‖zj,i‖W1,q(Bi\Bi−1) ≤

Cν
(1−λ)ρ

‖uj − ũ‖Lq(Bi\Bi−1).
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lim-inf inequality
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‖uj − ũ‖Lq(Bi\Bi−1).

15 / 21



lim-inf inequality
Regular points

Now define uj,i := ũj,i + zj,i ∈ LU(Ω;Rn). Notice that

uj,i − ũ = ϕi(uj − ũ) + zj,i ∈ LU0(Bρ(x0);Rn).

Then

fhom(Eu(x0)) = lim
j→∞

inf
ϕ∈LU0(Bρ(x0),Rn)

1

|Bρ(x0)|

∫
Bρ(x0)

f( x
εj
,Eu(x0) + Eϕ(x)) dx

≤ lim inf
j→∞

1

|Bρ(x0)|

∫
Bρ(x0)

f
(
x
εj
,Euj,i(x)

)
dx

Averaging: fhom(Eu(x0)) ≤ lim inf
j→∞

1

ν

ν∑
i=1

1

|Bρ(x0)|

∫
Bρ(x0)

f
(
x
εj
,Euj,i(x)

)
dx.

I First term: X

I Third term: λ↗ 1

I Second term: Lq-differentiability
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lim-inf inequality
Asymptotic convexity

We suppose that for every η > 0 there are

I βη > 0

I a Carathéodory function cη : Rn × Rn×nsym → R that is In-periodic in the first
variable and convex in the second,

such that for a.e. x ∈ Rn and all X ∈ Rn×nsym

|f(x,X)− cη(x,X)| ≤ η(|Xdev|+ (trX)2) + βη .

We will refer to this property as asymptotic convexity.

Let us notice that for f in our setting we may even suppose

I cη to be non-negative with cη(x, 0) = 0 for every x ∈ Rn,
I dom(c∗(x, )) to be closed for a.e. x ∈ Rn.

[Demengel, Qi 90]: For such convex function c

Γ- lim
ε→0

Cε = Chom with Chom(u) :=

{ ∫
Ω chom

(
Eu(x)

)
, u ∈ U(Ω;Rn),

∞, else,

where chom(X) = inf
ϕ∈LUper(In;Rn)

∫
In
c
(
x,X + Eϕ(x)

)
dx and

chom

(
Eu(x)

)
= chom

(
Eu(x)

)
dx+ (chom)#

(
dEsu

d|Esu|
(x)

)
d|Esu|(x).
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lim-inf inequality
Singular points

We have
µj := f( ·

εj
,Euj(·))Ln.

We may suppose

I limj→∞ Fεj (uj) equals the lim inf above with all uj ∈ LU(Ω;Rn),

I uj → u in Lq(Ω;Rn) due to the lower bound on f and since LU is compactly
embedded in Lq ,

I µj
∗
⇀ µ in M(Ω;Rn),

I (|Edevuj |+ (div uj)
2)Ln

∗
⇀ σ in M(Ω).

For each η > 0

f(x,X) ≥ cη(x,X)− η(|Xdev|+ (trX)2)− βη
µ ≥ cηhom(Eu)− η σ − βηLn

µs ≥ (cηhom)#( dEsu
d|Esu| )|E

su| − η σs

Since
lim
η→0

(cηhom)#(X) = (fhom)#(X),

and
µs ≥ (fhom)#

(
dEsu
d|Esu|

)
|Esu|.
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Theorem

Let us have a Carathéodory function f : Rn × Rn×nsym → R that

I is In-periodic in the first variable,

I has Hencky plasticity growth.

Let us denote

Fε(u) :=

{ ∫
Ω f
(
x
ε
,Eu(x)

)
dx, u ∈ LU(Ω;Rn),

∞, else,

and

Fhom(u) :=

{∫
Ω fhom

(
Eu(x)

)
dx+

∫
Ω(fhom)#

(
dEsu
d|Esu| (x)

)
d|Esu|(x), u ∈ U(Ω;Rn),

∞, else.

Then
Γ(L1)- lim sup

ε→0
Fε ≤ Fhom,

while for u ∈ LU(Ω;Rn) even

Γ(L1)- lim
ε→0

Fε(u) = Fhom(u).

The latter holds for all u ∈ L1(Ω;Rn) if f is asymptotically convex.
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Theorem

With assumptions and denotations as above, including the asymptotic convexity,
the following diagrams commute:

F
(δ)
ε F

(0)
ε

F
(δ)
hom Fhom

pt. falling

Γ Γ

Γ

and

F
(δ)
ε lscF

(0)
ε = lscFε

F
(δ)
hom Fhom

Γ

Γ Γ

Γ

All Γ-limits are with respect to the L1-norm.
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Thank you for your attention
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