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Homogenization and stress-strain diagram
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Hencky plasticity

o . ine
w" Our model:

perfectly plastic » elastic regime with linear dependence,

» perfectly plastic regime (Hencky
plasticity),

> plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, ... ).
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Hencky plasticity

o2 . ine
linear hardeniy Our model:

perfectly plastic » elastic regime with linear dependence,

» perfectly plastic regime (Hencky
plasticity),

> plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, ... ).

€

Thus, the energy at zero hardening is given by
. P
Tw) = [ f@€u(@) do with F(X) = faoy (Xaor) + 5 (tx X)?

where Cu(z) = %(Vu(m) + Vu(z)T), Xgov = X — —trnXI and fqev is convex and
given by
1 2 K
* — Em |Udev| ;  Odev € Kdev,
deV(UdeV) { 00, Odev é Kgev-
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Hencky plasticity

o . - hardening
linear harden Our model:

perfectly plastic » elastic regime with linear dependence,

» perfectly plastic regime (Hencky
plasticity),

> plastic regime with linear hardening.

Elastic region K is determined by some yield
criterion (von Mises, Tresca, ... ).

€

Thus, the energy at zero hardening is given by
. P
Tw) = [ f@€u(@) do with F(X) = faoy (Xaor) + 5 (tx X)?

where Cu(z) = %(Vu(m) + Vu(z)T), Xgov = X — —trnXI and fqev is convex and
given by
1 2 K
* — Em |Udev| ;  Odev € Kdev,
deV(UdeV) { 00, Odev é Kgev-

fdev has linear growth. Thus f grows linearly in the deviatoric direction
. and quadratically in the trace.

[

Solvability shown e.g. in [Anzellotti, Giaquinta 82]

Non-homogeneous convex setting considered in [Demengel, Qi 90]

3/21



Plan of the talk

Setting and spaces
m Case with hardening
m Homogenized density

Recovery sequence

liminf-inequality



Setting

Generalization: non-convex non-homogenous energy
Let f:R™ x R — R
> be I"-periodic Carathéodory function and

» have a Hencky plasticity growth, i.e. o, 8 > 0 such that for all z € 2 and
X € Riym'

O‘(lxdevl + (trX)2) S f(I,X) S ﬁ(leev‘ + (trX)Q + 1)'
Let Fe : L1(Q;R™) — R U {co} be defined by

Telw)= { Jo (£, €u(2)) do, we???,

00, else.

Does {Fc}e I'-converge and whereto?

N



Setting

Generalization: non-convex non-homogenous energy
Let f:R™ x R — R
> be I"-periodic Carathéodory function and

» have a Hencky plasticity growth, i.e. o, 8 > 0 such that for all z € 2 and
X € R&

sym
a(|Xaev| + (tr X)?) < f(@, X) < B(| Xaev| + (tr X)* +1).
Let Fe : L1(Q;R™) — R U {co} be defined by

Telw)= { Jo (£, €u(2)) do, we???,

00, else.

Does {Fc}e I'-converge and whereto?

Conjecture: The limit is of form

F(u) = Jq from (€u(z)) dz + recession(singular part), u€ wk-cl(???),
T 0, else.



Setting

Domain

Symmetrized gradient must exist (in weak sense), and

LD(Q;R™) := {u € LY (4 R") : €u € L(Q;R™*™)},

lullep = llullLr +[|€u]l L1



Setting

Domain

Symmetrized gradient must exist (in weak sense), and
LD(Q;R™) := {u € LY (4 R") : €u € L(Q;R™*™)},

The natural domain for F is

lullep = llullLr +[|€u]l L1

LU(®;R™) == {u € LD(R™) :divu € L2(Q)},  lullzy = llullzp + || divul 2.



Setting

Domain

Symmetrized gradient must exist (in weak sense), and

LD(R™) i= {u € LY QR : €u € LNQR™ ™}, [ullp = ull 1 + [€ul 1.
The natural domain for ¥ is

LU(%R™) = {u € LD(R") sdivu € L2(Q)},  ullro = l[ullLp + || divul| g2

Due to the lack of weak compactness, we introduce the space BD(€2;R"™) of all
uw € LY(;R™) such that Eu € M(Q; R**") with the norm

lullBp = llullpr + | Eullar-

Then
Eu=¢u L™ + E’u.



Setting

Domain

Symmetrized gradient must exist (in weak sense), and

LD(R™) i= {u € LY QR : €u € LNQR™ ™}, [ullp = ull 1 + [€ul 1.
The natural domain for ¥ is

LU(%R™) = {u € LD(R") sdivu € L2(Q)},  ullro = l[ullLp + || divul| g2

Due to the lack of weak compactness, we introduce the space BD(€2;R"™) of all
uw € LY(;R™) such that Eu € M(Q; R**") with the norm

lullBp = llullpr + | Eullar-

Then
Eu=¢u L™ + E’u.

Moreover,

UQR") = {u € BD(R") :divu € L2(Q)}, |lully = [ullsp + || divaul 2.



Setting

Domain
Symmetrized gradient must exist (in weak sense), and
LD(@R™) = {u € LR : €u€ LHQHR™MY, fullpp = llul s + €l 1.
The natural domain for ¥ is
LU(Q;R™) := {u € LD(;R™) : divu € L2(Q)}, ullzy = lullep + || divaul 2.

Due to the lack of weak compactness, we introduce the space BD(€2;R"™) of all
uw € LY(;R™) such that Eu € M(Q; R**") with the norm

lullBp = llullpr + | Eullar-

Then
Eu=¢u L™ + E’u.

Moreover,
UR™) = {u € BD(GR") s divu € LX)}, [ullv = fullsp + | divul .
¢ > 0 convex function with linear upper bound. c-strict convergence:
> strict convergence: uj — w in L*(Q;R™) and |Eu;|(Q) — |Eu|(Q),

> divu; — divu in L2(Q),
> fn c(Baevuj) — fQ c(B4evu) and fn (Buj) — fQ c(Bu).



Case with hardening

Consider also () (z, X) = f(x, X) + 6| Xqev|? and

3.(6)( {f f(‘s) Z, Cu(z)) dz, u € WH2(Q;R"),

oo, else.

For § > 0 the densities have a quadratic growth in |Xsym|. The functionals are
therefore of Garding type ([Schmidt, MJ 14]).
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Case with hardening

Consider also () (z, X) = f(x, X) + 6| Xqev|? and

3.(6)( {f f(‘s) Z, Cu(z)) dz, u € WH2(Q;R"),

oo, else.

For § > 0 the densities have a quadratic growth in |Xsym|. The functionals are
therefore of Garding type ([Schmidt, MJ 14]). Hence,

om

F(Lz)- Eh_% &.—5:5) — 9;}(]5)

where 7°) has domain W12(Q; R™) and has the density

hom

1
f(‘;) X inf inf —/ f(‘s) z, X + Cp(x)) dx.
hom( ) kEN EWl 2(k]1” rn) kn KIn ( (P( ))

In fact, it is also I-convergence in L' because of the quadratic growth of the
density and Poincaré’s and Korn’s inequality.
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Diagrams

pt. falling rLl)
?Q‘” ?§°> ?éé) — Isc ?éo) =lscFe
NG N
Tiom Fiom

8 /21



Diagrams

t. fallin, rLl)
?Q‘” ° z ?§°> ?éé) ———Isc ?éo) =lscF.
NG N
() (8)
ghom g‘hom
Let 1
w(X) = inf inf — X+ ¢ dz.
Jhom (X) B oo Binan) B /W [z, X + €p(x)) do
Clearly
X) = inf £ (X).
fhom( ) gl;ofhom( )
Define
G(0) () = Jo fhom (€u(z)), we LU(Q;R™)NWL2(Q;R™),
' 00, else,
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Diagrams

. fallin r(rl)
g6 P 00 FO —————— 15 7O = Isc 7.
ot rh)
(8) (8) 0) —
Fhom pt. falling 5 Fhom rly 1sc G =1lse§

Let 1

X) := inf inf = X +¢ da.

Fhom (X) B et gy T /W [z, X + €p(2)) da
Clearly
X) = inf £ (X
fhom( ) SH;thom( )
Define
G0 () = Jo fhom (€u(z)), we LU(Q;RM)NWL2(Q;R™),
' 00, else,
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Diagrams

pt. falling

keN peCge (kIn;R™) k™

3326) gjgo)
r(Lly
(8) 0
fTVhom pt. falling 9( )
Let
Sfhom (X) := inf
Clearly
Define
9(())(u) = { fQ fhom(eu(m))a
Notice

?(6) > I-limsup F¢

=0

hom

r(Lly
FO) 5 15c FO —15c T

rLly

50

hom

1s5c GO = 1sc§

N

1
inf

/ [z, X + €p(2)) da.
kI

u € LU(Q; RM)NWL2(Q; R™),
else,

and therefore 1scG > I'-limsup JF..

e—=0
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Homogenized density

The homogenized density

1
om X) = f inf ,X ¢ d
From (X) élelN goecool?knn R™) kn in f(z + @(x)) v

> is symmetric-quasiconvex,
» has Hencky plasticity growth,

> (fqu)hom = fhom~
Subadditive Z™-invariant processes [Akcoglu, Krengel 80|, [Licht, Michaille 02]:

inf ...= lim ...
keN k— o0

For every open bounded convex set V and g5 \, 0
1

foom(X) = lim inf T, f(z, X + €p(z)) dz
k=00 pe0ge (e TViRT) Iak VIJegtv

lim mf / (z, X + €p(z)) dx
k=00 e LU (e ViR™) IEk Vi
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Recovery sequence

Idea for a recovery sequence for lsc §

Reshetnyak continuity theorem (Kristensen, Rindler 10)

Let f € B(;RY), and

pj = pin MQRY)  and () (Q) — (u)(Q).

Then
Jim. ng( @) da +/f°°< T 5|<x>> dluil(w)] =
= [ (=2 @) @t [ (= d“;'(x)) dlp?|(@).

(4) == V14 AP

E(;RY) = {functions extendable to co}

ty
g°°(X) = limsup 9(tY)
Y—X, t—oo t

LU(Q;R™) N C°(Q;R™) is dense in U(Q;R™) in (-)-strict topology.



Recovery sequence

(-)-strict continuity

Let f: Q x R — R be a continuous function that
> is symmetric-rank-one-conver in the second variable,
> satisfies the Hencky growth condition.
Denote = nxn. Suppose that
fdev fIQXRdef/ pp

. faev (o, tP
(faex) (0, Po) = limsup Jaerl@0:tP)
P— Py, t—o0 t

RY*™ g continuous function of xg. Then the functional

dev

is for every fixed Py €
7w = [ fle.eu@) do+ [ (fao)™ (o A0 @) dIEul(@)

is (-)-strictly continuous on U(Q2;R™).



Recovery sequence

(-)-strict continuity

Let f: Q x R — R be a continuous function that
> is symmetric-rank-one-conver in the second variable,
> satisfies the Hencky growth condition.
Denote = nxn . Suppose that
fdev fIQXRdef/ PD

. faev (o, tP
(faex) (0, Po) = limsup Jaerl@0:tP)
P— Py, t—o0 t

XN g continuous function of xg. Then the functional

dev
7w = [ fle.eu@) do+ [ (fao)™ (o A0 @) dIEul(@)

is (-)-strictly continuous on U(Q2;R™).

is for every fixred Py € R

Ingredients of the proof:
» Special Lipschitz continuity in the trace direction
» Approximation of functions > —a(1 + | X|) by functions from E(Q;RY)
[Alibert, Bouchitté 97]
» Rank-one theorem (De Philippis, Rindler 16): Let w € BD(Q;R™). Then, for
|ESul-a.e. x € Q, there exist a(z),b(z) € R™\ {0} such that

dE%u
d|ESul|

= a(z) © b(z) = 3(a(z) @ b(z) + b(x) ® a(z)).



lim-inf inequality

We now have

r(Lly
5

(Ll

?
g Fhom > lscG > T-limsupF. > T-liminfFe > From
\_/ o -
r(Lly
with
e _ [y From (€u(2)) dz+ [o,(from)# (dc\lgzm (x)) d|ESul(x), ue U(RY),
om 0, else.
and



lim-inf inequality

We may suppose liminf; 00 Fe; (uj) < oo. Let us fix some 1 < ¢ < ;-5 and
define measures
nj = f(, €u ()L™



lim-inf inequality

We may suppose liminf; 00 Fe; (uj) < oo. Let us fix some 1 < ¢ < ;-5 and
define measures
mj = Cuy ()L™,
By stepwise extracting appropriate subsequences we may get a (not relabeled)
sequence such that
> lim; 0 Fe; (u;) equals the liminf above with all u; € LU(S;R™),

> u; — uin L2(Q;R™) due to the lower bound on f and since LU is compactly
embedded in L9,

> and p; X in M(Q;R™).



lim-inf inequality

We may suppose liminf; 00 Fe; (uj) < oo. Let us fix some 1 < ¢ < ;-5 and
define measures
mj = Cuy ()L™,
By stepwise extracting appropriate subsequences we may get a (not relabeled)
sequence such that
> lim; 0 Fe; (u;) equals the liminf above with all u; € LU(S;R™),

> u; — uin L2(Q;R™) due to the lower bound on f and since LU is compactly
embedded in L9,

> and p; X in M(Q;R™).
Let
p=gL" +p’.
Goal:

» Regular points: for a.e. g €

g(zo) = lim lim 13 (Bp(@0))

p—=0j—00  |By(zo)| 2 fhom(€u(z0)).

» Singular points:

N fhom (dﬁg“Z\)lEsul



lim-inf inequality
L9-differentiability

Every u € BD(Q;R™) 4s L9-differentiable a.e. for any 1 < ¢ < 25, i.e., there

exists a negligible set N C Q such that for all zog € Q\ N there exists a matriz
Ly, € R™*™ such that

w(@) — u(@o) — Lag (z — o) |71

dr = 0.

1
lim —/

Therefore, u is a.e. approzimately differentiable with Ly, = Vu(xo) being the
approximate differential.

Proof: ¢ = 1 by [Ambrosio, Coscia, Dal Maso 97] + (Korn-)Poincaré inequality for
BD(Q;R"™)
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lim-inf inequality

Regular points: De Giorgi’s slicing method

Let us take and fix any xg where the func-
tion w is approximately differentiable and
define

u(z) := u(zo) + Vu(zo) (z — z0).
Usually

i =+ @i(u; — @) € L' (R™).




lim-inf inequality

Regular points: De Giorgi’s slicing method

Let us take and fix any xg where the func-
tion w is approximately differentiable and
define

i(z) = u(zo) + Vu(zo) (z — o).
Usually
@ji = U+ pi(uj —a) € L' (G R™).
But

divﬂj,i = (1 — 992') diva + ¢; diVuj+
+ Vi - (u; — @)

and there in no control on the last term
L2,



lim-inf inequality

Regular points: De Giorgi’s slicing method meets Bogovski\i"s operator

Let us take and fix any xg where the func-
tion u is approximately differentiable and
define

i(x) = u(zo) + Vu(zo) (z — z0).
Usually
Ty o=+ i (uy — @) € LT (G R™).
But

div ﬂj,i = (1 - QDZ‘) diva + ¢; divuj+
+ Vi - (u; — @)

and there in no control on the last term
L2
Cj,i = average of Vo, - (uj — @) in B; \ Bj_1.
By the result of Bogovskii, there exist z;; € Wol’q(Bz- \ B;_1) such that
divzj; = =V; - (u; — ) +
with
HZJ'JHWLQ(B,-\ﬁ) < (197%‘,”“]' _a”LQ(Bi\K)'



lim-inf inequality

Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that

uj; — @ = @i(u; — @) + 2;,; € LUo(Bp(w0); R™).
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lim-inf inequality

Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that

uj; — @ = @i(u; — @) + 2;,; € LUo(Bp(w0); R™).

Then
1
om (Cu(x = lim _ L CEu(xo) + Ep(x)) dx
from(€u(z0)) 8 pe vy (Bate) ) [Bp(o)| Bpm))f(fﬂ (o) + €2(e)
< hmmf; f(f,@ujﬁ'(a:)) dx
J

3= |Bp(z0)| /B, (x0)
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lim-inf inequality

Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that

uj; — @ = @i(u; — @) + 2;,; € LUo(Bp(w0); R™).

Then
1
om (Cu(x = lim _ L CEu(xo) + Ep(x)) dx
Foom(Eu(0) ]—>OOLP€LUO(Bp(x0)R ) |Bp(o)] Bp(zo)f(EJ (@o) (@)
1
< liminf ——— f(E, Cuj(x)) do
j—oo ‘Bp(xo)‘ B, (x0) (E] J )
- 1
ing: m < 2L Cujg .
Averaging:  fhom (€u(zo)) llrggolf ” Z 1By i, ooy f(sj Cu;;(z)) da
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lim-inf inequality
Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that
g — 0= @i(uj — @) + zj,; € LUo(Bp(z0); R™).

Then
1
om (Cu(x = lim _ L CEu(xo) + Ep(x)) dx
fhom(€u(w0)) JﬁwweLUo(Bp(xo)R ) [ Bp(z0)] Bp(zo)f(sj (z0) + &¢(=))
< liminf f(f,@ujﬂ'(a:)) dx
J

3= |Bp(z0)| /B, (x0)

- 1
Averaging:  fhom(€u(zo)) < liminf f(E, Cuji(x)) de.
o €0(a0) Ut S e [ 9 o)

¢ j €u(o)
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lim-inf inequality
Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that
g — 0= @i(uj — @) + zj,; € LUo(Bp(z0); R™).

Then
1
om (Cu(x = lim _ L CEu(xo) + Ep(x)) dx
fhom(€u(w0)) JﬁwweLUo(Bp(xo)R ) [ Bp(z0)] Bp(zo)f(sj (z0) + &¢(=))
< liminf f(f,@ujﬂ'(a:)) dx
J

3= |Bp(z0)| /B, (x0)
v 1 o
f(;,(’fumi(:c)) dx.

Averaging:  fhom (€u(zo)) < liminf
° j—o0 VZ |Bp(zo)| B, (z0) 3

» First term: v/

¢ j €u(o)
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lim-inf inequality
Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that

ji — &= pi(uj — @) + 2, € LUo(Bp(z0); R").
Then
1
om (Cu(x = lim _ L CEu(xo) + Ep(x)) dx
fhom(€u(w0)) JﬁwweLUo(Bp(xo)R ) [ Bp(z0)] Bp(zo)f(sj (z0) + &¢(=))
<  liminf ——— f(E, Cujq(x)) do
PR Broll Jay | 5 94
Averaging:  fhom (€u(zo)) < liminf — i ! f(si, Cu;;(z)) da.
3= v |Bp(zo)| /B, (20) " I
\\
QEU(-'L'O) > First term: v/
» Third term: A "1

16 /
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lim-inf inequality
Regular points

Now define wuj ; := @ + zj,; € LU(€;R™). Notice that

ji — &= pi(uj — @) + 2, € LUo(Bp(z0); R").
Then
1
om (Cu(x = lim _ 2L Cu(xo) + Ep(x)) dz
fhom(€u(w0)) JﬁwveLUo(Bp(xo)R ) [ Bp(z0)] Bp(zo)f(sj (z0) + &¢(=))
< liminf ——— f(E, Cujq(x)) do
P B @ iy oy | 91
Averaging:  fhom (€u(zo)) < liminf — i ! f(ei, Cu;;(z)) da.
3= v |Bp(zo)| /B, (20) " I

|

| |
‘ qu(.’lto)\ » First term: v/

‘ » Third term: A "1
> Second term: L9-differentiability

16 /

21



lim-inf inequality

Asymptotic convexity

We suppose that for every n > 0 there are
> By, >0
» a Carathéodory function ¢” : R™ x ngff — R that is I"-periodic in the first
variable and convex in the second,

such that for a.e. z € R™ and all X € R
(2, X) = (2, X)| < n(| Xaev| + (tr X)?) + By

We will refer to this property as asymptotic convezity.

Let us notice that for f in our setting we may even suppose
> ¢" to be non-negative with ¢"(z,0) = 0 for every z € R",
» dom(c*(z, _)) to be closed for a.e. z € R™.



lim-inf inequality

Asymptotic convexity

We suppose that for every n > 0 there are
> By, >0
» a Carathéodory function ¢” : R™ x ngff — R that is I"-periodic in the first
variable and convex in the second,

such that for a.e. z € R™ and all X € R
(2, X) = (2, X)| < n(| Xaev| + (tr X)?) + By

We will refer to this property as asymptotic convezity.

Let us notice that for f in our setting we may even suppose
> ¢" to be non-negative with ¢"(z,0) = 0 for every z € R",
» dom(c*(z, _)) to be closed for a.e. z € R™.

[Demengel, Qi 90]: For such convex function c¢

fQ Chom(Eu(I))a u € U(Q§Rn):
0, else,

I-lim Cc = Chom With Chom(u) := {
e—0
here  chom(X) = inf c(z, X 4+ €p(z)) de and
v hom (X) LpELUper(JI";]R")/Im ( i ))

dESu
d|Esul

hom (Eu(2)) = chom (€u(®)) do + (crom)? ( <z>) dE*ul(z).



lim-inf inequality

Singular points

We have
i = 1 €y ()L™,
We may suppose
> lim; o0 Ie; (u;) equals the liminf above with all u; € LU(S;R™),

> u; — uin L1(Q;R™) due to the lower bound on f and since LU is compactly
embedded in L9,

>y = pin M(Q;R™),
> (|€deviy| + (divu;)?)L™ = o in M(Q).



lim-inf inequality

Singular points

We have
i = 1 €y ()L™,
We may suppose
> lim; o0 Ie; (u;) equals the liminf above with all u; € LU(S;R™),

> u; — uin L1(Q;R™) due to the lower bound on f and since LU is compactly
embedded in L9,

>y = pin M(Q;R™),
> (|€deviy| + (divu;)?)L™ = o in M(Q).
For each n > 0

@, X) > @, X) = n(|Xaev| + (tr X)?) = By
po > o (Bu)—no—ByL"
B2 (o) (B | Bl —
Since
Jim (flo)* (X) = (from) ™ (X),
and

s Z (fhorn) ( (Tgsu|)|Esu‘



Theorem
Let us have a Carathéodory function f : R™ x RIS — R that

> s [™-periodic in the first variable,
> has Hencky plasticity growth.

Let us denote

5 (u) : {fn (2,¢u(z)) dz, we€ LU(HR™),

00, else,

and

_ [ from (€u(@)) de+ [o (faom)* (o () dIE*ul(z), € U(QR™M),
Fhom(u) 00, else.

Then
I(L')-limsup Fe < Fnom,
e—0

while for u € LU(Q;R™) even

F(Ll)—sli_% Fe(u) = Fnom ().

The latter holds for all u € L*(Q;R™) if f is asymptotically conves.
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Theorem

With assumptions and denotations as above, including the asymptotic convezity,
the following diagrams commute:

pt. falling T
Q) > F(0) F) —— 15cF) = Isc T
r I and r r
) . 5 5 s Foo
:}'hom T g'hom gl(qo)rn T rfhom

All T-limits are with respect to the L'-norm.
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Thank you for your attention



