Homogenization in the Hencky plasticity setting

Martin Jesenko

joint work with Bernd Schmidt (Universität Augsburg)

M. Jesenko, B. Schmidt, Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials, arXiv:1703.09443 [math.AP]

Homogenization Theory and Applications (HomTAp) Berlin, October 4-6, 2017

Homogenization and stress-strain diagram

2 / 21

Hencky plasticity

Our model:

- \blacktriangleright elastic regime with linear dependence,
- \blacktriangleright perfectly plastic regime (Hencky plasticity),
- \blacktriangleright plastic regime with linear hardening.

Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Hencky plasticity

Our model:

- \blacktriangleright elastic regime with linear dependence,
- \blacktriangleright perfectly plastic regime (Hencky plasticity),
- \blacktriangleright plastic regime with linear hardening. Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Thus, the energy at zero hardening is given by

$$
\mathcal{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\text{tr } X)^2
$$

where $\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T)$, $X_{\text{dev}} = X - \frac{\text{tr } X}{n}I$ and f_{dev} is convex and given by

$$
f_{\text{dev}}^*(\sigma_{\text{dev}}) = \begin{cases} \frac{1}{4\mu} |\sigma_{\text{dev}}|^2, & \sigma_{\text{dev}} \in K_{\text{dev}},\\ \infty, & \sigma_{\text{dev}} \notin K_{\text{dev}}. \end{cases}
$$

Hencky plasticity

Our model:

- \blacktriangleright elastic regime with linear dependence,
- \blacktriangleright perfectly plastic regime (Hencky plasticity),
- \blacktriangleright plastic regime with linear hardening. Elastic region K is determined by some yield criterion (von Mises, Tresca, . . .).

Thus, the energy at zero hardening is given by

$$
\mathcal{F}(u) = \int_{\Omega} f(\mathfrak{E}u(x)) dx \quad \text{with} \quad f(X) = f_{\text{dev}}(X_{\text{dev}}) + \frac{\varkappa}{2} (\text{tr } X)^2
$$

where $\mathfrak{E}u(x) = \frac{1}{2}(\nabla u(x) + \nabla u(x)^T)$, $X_{\text{dev}} = X - \frac{\text{tr } X}{n}I$ and f_{dev} is convex and given by

$$
f_{\text{dev}}^*(\sigma_{\text{dev}}) = \begin{cases} \frac{1}{4\mu} |\sigma_{\text{dev}}|^2, & \sigma_{\text{dev}} \in K_{\text{dev}}, \\ \infty, & \sigma_{\text{dev}} \notin K_{\text{dev}}. \end{cases}
$$

 f_{dev} has linear growth. Thus f grows linearly in the deviatoric direction and quadratically in the trace.

Solvability shown e.g. in [Anzellotti, Giaquinta 82]

Non-homogeneous convex setting considered in [Demengel, Qi 90]

- Setting and spaces
- Case with hardening $\mathcal{L}_{\mathcal{A}}$
- Homogenized density
- Recovery sequence \blacksquare
- liminf-inequality \blacksquare

Setting

Generalization: non-convex non-homogenous energy

Let $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$

- \blacktriangleright be $\mathbb{I}^n\text{-periodic Carathéodory function}$ and
- If have a Hencky plasticity growth, i.e. $\exists \alpha, \beta > 0$ such that for all $x \in \Omega$ and $X \in \mathbb{R}^{n \times n}_{\text{sym}}$

$$
\alpha(|X_{\text{dev}}| + (\text{tr } X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\text{tr } X)^2 + 1).
$$

Let $\mathcal{F}_{\varepsilon}: L^1(\Omega;\mathbb{R}^n) \to \mathbb{R} \cup {\infty}$ be defined by

$$
\mathcal{F}_{\varepsilon}(u) := \begin{cases} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) dx, & u \in ???, \\ \infty, & \text{else.} \end{cases}
$$

Does $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon}$ Γ-converge and whereto?

Setting

Generalization: non-convex non-homogenous energy

Let $f: \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$

- \blacktriangleright be $\mathbb{I}^n\text{-periodic Carathéodory function}$ and
- In have a Hencky plasticity growth, i.e. $\exists \alpha, \beta > 0$ such that for all $x \in \Omega$ and $X \in \mathbb{R}^{n \times n}_{\text{sym}}$

$$
\alpha(|X_{\text{dev}}| + (\text{tr } X)^2) \le f(x, X) \le \beta(|X_{\text{dev}}| + (\text{tr } X)^2 + 1).
$$

Let $\mathcal{F}_{\varepsilon}: L^1(\Omega;\mathbb{R}^n) \to \mathbb{R} \cup {\infty}$ be defined by

$$
\mathcal{F}_{\varepsilon}(u) := \begin{cases} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) dx, & u \in ???, \\ \infty, & \text{else.} \end{cases}
$$

Does $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon}$ Γ-converge and whereto?

Conjecture: The limit is of form

$$
\mathcal{F}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E}u(x)) dx + \text{recession(singular part)}, & u \in \text{wk-cl}(???), \\ \infty, & \text{else.} \end{cases}
$$

n Symmetrized gradient must exist (in weak sense), and

 $LD(\Omega; \mathbb{R}^n) := \{u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n})\}, \quad ||u||_{LD} := ||u||_{L^1} + ||\mathfrak{E}u||_{L^1}.$

I Symmetrized gradient must exist (in weak sense), and

 $LD(\Omega; \mathbb{R}^n) := \{u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n})\}, \quad ||u||_{LD} := ||u||_{L^1} + ||\mathfrak{E}u||_{L^1}.$

 \blacksquare The natural domain for $\mathfrak F$ is

 $LU(\Omega;\mathbb{R}^n) := \{u \in LD(\Omega;\mathbb{R}^n) : \text{div } u \in L^2(\Omega)\}, \quad ||u||_{LU} := ||u||_{LD} + || \text{div } u||_{L^2}.$

I Symmetrized gradient must exist (in weak sense), and

 $LD(\Omega; \mathbb{R}^n) := \{u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n})\}, \quad ||u||_{LD} := ||u||_{L^1} + ||\mathfrak{E}u||_{L^1}.$

 \blacksquare The natural domain for $\mathfrak F$ is

$$
LU(\Omega;\mathbb{R}^n) := \{ u \in LD(\Omega;\mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad ||u||_{LU} := ||u||_{LD} + ||\text{div } u||_{L^2}.
$$

E Due to the lack of weak compactness, we introduce the space $BD(\Omega;\mathbb{R}^n)$ of all $u \in L^1(\Omega;\mathbb{R}^n)$ such that $Eu \in M(\Omega;\mathbb{R}^{n \times n})$ with the norm

$$
||u||_{BD} = ||u||_{L^1} + ||Eu||_M.
$$

Then

$$
Eu = \mathfrak{E}u \mathcal{L}^n + E^s u.
$$

I Symmetrized gradient must exist (in weak sense), and

 $LD(\Omega; \mathbb{R}^n) := \{u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n})\}, \quad ||u||_{LD} := ||u||_{L^1} + ||\mathfrak{E}u||_{L^1}.$

 \blacksquare The natural domain for $\mathfrak F$ is

 $LU(\Omega;\mathbb{R}^n) := \{u \in LD(\Omega;\mathbb{R}^n) : \text{div } u \in L^2(\Omega)\}, \quad ||u||_{LU} := ||u||_{LD} + || \text{div } u||_{L^2}.$

E Due to the lack of weak compactness, we introduce the space $BD(\Omega;\mathbb{R}^n)$ of all $u \in L^1(\Omega;\mathbb{R}^n)$ such that $Eu \in M(\Omega;\mathbb{R}^{n \times n})$ with the norm

$$
||u||_{BD} = ||u||_{L^1} + ||Eu||_M.
$$

Then

$$
Eu = \mathfrak{E}u \mathcal{L}^n + E^s u.
$$

⁴ Moreover,

 $U(\Omega; \mathbb{R}^n) := \{ u \in BD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad ||u||_U := ||u||_{BD} + || \text{div } u||_{L^2}.$

I Symmetrized gradient must exist (in weak sense), and

 $LD(\Omega; \mathbb{R}^n) := \{u \in L^1(\Omega; \mathbb{R}^n) : \mathfrak{E}u \in L^1(\Omega; \mathbb{R}^{n \times n})\}, \quad ||u||_{LD} := ||u||_{L^1} + ||\mathfrak{E}u||_{L^1}.$

 \blacksquare The natural domain for $\mathfrak F$ is

 $LU(\Omega;\mathbb{R}^n) := \{u \in LD(\Omega;\mathbb{R}^n) : \text{div } u \in L^2(\Omega)\}, \quad ||u||_{LU} := ||u||_{LD} + || \text{div } u||_{L^2}.$

E Due to the lack of weak compactness, we introduce the space $BD(\Omega;\mathbb{R}^n)$ of all $u \in L^1(\Omega;\mathbb{R}^n)$ such that $Eu \in M(\Omega;\mathbb{R}^{n \times n})$ with the norm

$$
||u||_{BD} = ||u||_{L^1} + ||Eu||_M.
$$

Then

$$
Eu = \mathfrak{E}u \mathcal{L}^n + E^s u.
$$

⁴ Moreover,

 $U(\Omega; \mathbb{R}^n) := \{ u \in BD(\Omega; \mathbb{R}^n) : \text{div } u \in L^2(\Omega) \}, \quad ||u||_U := ||u||_{BD} + || \text{div } u||_{L^2}.$

 $c \geq 0$ convex function with linear upper bound. *c-strict convergence*:

- ight strict convergence: $u_j \to u$ in $L^1(\Omega; \mathbb{R}^n)$ and $|Eu_j|(\Omega) \to |Eu|(\Omega)$,
- \blacktriangleright div $u_j \to$ div u in $L^2(\Omega)$,
- $\blacktriangleright \int_{\Omega} c(E_{\text{dev}} u_j) \to \int_{\Omega} c(E_{\text{dev}} u) \text{ and } \int_{\Omega} c(E u_j) \to \int_{\Omega} c(E u).$

Consider also $f^{(\delta)}(x, X) = f(x, X) + \delta |X_{\text{dev}}|^2$ and $\mathcal{F}_{\varepsilon}^{(\delta)}(u) := \begin{cases} \int_{\Omega} f^{(\delta)}(\frac{x}{\varepsilon}, \mathfrak{E} u(x)) dx, & u \in W^{1,2}(\Omega; \mathbb{R}^n), \end{cases}$

For $\delta > 0$ the densities have a quadratic growth in $|X_{sym}|$. The functionals are therefore of Gårding type ([Schmidt, MJ 14]).

 ∞ , else.

Consider also $f^{(\delta)}(x, X) = f(x, X) + \delta |X_{\text{dev}}|^2$ and $\mathcal{F}_{\varepsilon}^{(\delta)}(u) := \begin{cases} \int_{\Omega} f^{(\delta)}(\frac{x}{\varepsilon}, \mathfrak{E} u(x)) dx, & u \in W^{1,2}(\Omega; \mathbb{R}^n), \end{cases}$

For $\delta > 0$ the densities have a quadratic growth in $|X_{\rm sym}|$. The functionals are therefore of Gårding type ([Schmidt, MJ 14]). Hence,

$$
\Gamma(L^2) \text{-} \lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}^{(\delta)} = \mathcal{F}_{\text{hom}}^{(\delta)}
$$

 ∞ , else.

where $\mathcal{F}_{\text{hom}}^{(\delta)}$ has domain $W^{1,2}(\Omega;\mathbb{R}^n)$ and has the density

$$
f_{\text{hom}}^{(\delta)}(X) = \inf_{k \in \mathbb{N}} \inf_{\varphi \in W_0^{1,2}(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f^{(\delta)}(x, X + \mathfrak{E}\varphi(x)) dx.
$$

In fact, it is also Γ-convergence in L^1 because of the quadratic growth of the density and Poincaré's and Korn's inequality.

Let

$$
f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_c^{\infty}(\{k\}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) dx.
$$

Clearly

$$
f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).
$$

Define

$$
\mathcal{G}^{(0)}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E} u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{cases}
$$

Let

$$
f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_c^{\infty}(\kappa \mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k \mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) dx.
$$

Clearly

$$
f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).
$$

Define

$$
\mathcal{G}^{(0)}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E} u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{cases}
$$

Let

$$
f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_c^{\infty}(\kappa \mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k \mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) dx.
$$

Clearly

$$
f_{\text{hom}}(X) = \inf_{\delta > 0} f_{\text{hom}}^{(\delta)}(X).
$$

Define

$$
\mathcal{G}^{(0)}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E} u(x)), & u \in LU(\Omega; \mathbb{R}^n) \cap W^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{cases}
$$

Notice

$$
\mathcal{F}^{(\delta)}_{\text{hom}} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \quad \text{and therefore} \quad \mathop{\rm lsc} \mathcal{G} \geq \Gamma\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}.
$$

Homogenized density

The homogenized density

$$
f_{\text{hom}}(X) := \inf_{k \in \mathbb{N}} \inf_{\varphi \in C_c^\infty(k\mathbb{I}^n; \mathbb{R}^n)} \frac{1}{k^n} \int_{k\mathbb{I}^n} f(x, X + \mathfrak{E}\varphi(x)) dx
$$

- \triangleright is symmetric-quasiconvex,
- \triangleright has Hencky plasticity growth,
- \blacktriangleright $(f^{\text{qcls}})_{\text{hom}} = f_{\text{hom}}$.

Subadditive \mathbb{Z}^n -invariant processes [Akcoglu, Krengel 80], [Licht, Michaille 02]:

$$
\inf_{k\in\mathbb{N}}\ldots=\lim_{k\to\infty}\ldots
$$

For every open bounded convex set V and $\varepsilon_k \searrow 0$

$$
f_{\text{hom}}(X) = \lim_{k \to \infty} \inf_{\varphi \in C_c^{\infty} (\varepsilon_k^{-1} V; \mathbb{R}^n)} \frac{1}{|\varepsilon_k^{-1} V|} \int_{\varepsilon_k^{-1} V} f(x, X + \mathfrak{E} \varphi(x)) dx
$$

$$
= \lim_{k \to \infty} \inf_{\varphi \in LU_0 (\varepsilon_k^{-1} V; \mathbb{R}^n)} \frac{1}{|\varepsilon_k^{-1} V|} \int_{\varepsilon_k^{-1} V} f(x, X + \mathfrak{E} \varphi(x)) dx.
$$

Recovery sequence

Idea for a recovery sequence for lsc G

Reshetnyak continuity theorem (Kristensen, Rindler 10)

Let $f \in \mathbf{E}(\Omega;\mathbb{R}^N)$, and

$$
\mu_j \stackrel{*}{\rightharpoonup} \mu
$$
 in $M(\Omega; \mathbb{R}^N)$ and $\langle \mu_j \rangle(\Omega) \to \langle \mu \rangle(\Omega)$.

Then

$$
\begin{split} &\lim_{j\rightarrow\infty}\left[\int_{\Omega}f\left(x,\frac{d\mu^{a}_j}{d\mathcal{L}^{n}}(x)\right)\;dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu^{s}_j}{d|\mu^{s}_j|}(x)\right)\;d|\mu^{s}_j|(x)\right]=\\ &=\int_{\Omega}f\left(x,\frac{d\mu^{a}}{d\mathcal{L}^{n}}(x)\right)\;dx+\int_{\Omega}f^{\infty}\left(x,\frac{d\mu^{s}}{d|\mu^{s}|}(x)\right)\;d|\mu^{s}|(x). \end{split}
$$

$$
\langle A \rangle := \sqrt{1 + |A|^2}
$$

$$
\mathbf{E}(\Omega; \mathbb{R}^N) = \{\text{functions extendable to } \infty\}
$$

$$
g^{\infty}(X) = \limsup_{Y \to X, t \to \infty} \frac{g(tY)}{t}
$$

Theorem

 $LU(\Omega;\mathbb{R}^n) \cap C^{\infty}(\Omega;\mathbb{R}^n)$ is dense in $U(\Omega;\mathbb{R}^n)$ in $\langle \cdot \rangle$ -strict topology.

Recovery sequence $\langle \cdot \rangle$ -strict continuity

Theorem

Let $f : \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- \triangleright is symmetric-rank-one-convex in the second variable,
- \triangleright satisfies the Hencky growth condition.

Denote $f_{\text{dev}} := f|_{\Omega \times \mathbb{R}_{\text{dev}}^{n \times n}}$. Suppose that $(f_{\text{dev}})^{\infty}(x_0, P_0) = \limsup_{P \to P_0, t \to \infty}$ $f_{\text{dev}}(x_0, tP)$ t is for every fixed $P_0 \in \mathbb{R}^{n \times n}_{\text{dev}}$ a continuous function of x_0 . Then the functional $\mathcal{F}(u) = \int_{\Omega} f(x, \mathfrak{E}u(x)) dx + \int_{\Omega}$ $\int_\Omega (f_{\mathrm{dev}})^\infty\bigl(x,\frac{dE^s u}{d|E^s u|}(x)\bigr)\,\, d|E^s u|(x)$ is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

Recovery sequence $\langle \cdot \rangle$ -strict continuity

Theorem

Let $f : \Omega \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ be a continuous function that

- \triangleright is symmetric-rank-one-convex in the second variable.
- \triangleright satisfies the Hencky growth condition.

Denote $f_{\text{dev}} := f|_{\Omega \times \mathbb{R}_{\text{dev}}^{n \times n}}$. Suppose that $(f_{\text{dev}})^{\infty}(x_0, P_0) = \limsup_{P \to P_0, t \to \infty}$ $f_{\text{dev}}(x_0, tP)$ t is for every fixed $P_0 \in \mathbb{R}^{n \times n}_{\text{dev}}$ a continuous function of x_0 . Then the functional $\mathcal{F}(u) = \int_{\Omega} f(x, \mathfrak{E}u(x)) dx + \int_{\Omega}$ $\int_\Omega (f_{\mathrm{dev}})^\infty\bigl(x,\frac{dE^s u}{d|E^s u|}(x)\bigr)\,\, d|E^s u|(x)$ is $\langle \cdot \rangle$ -strictly continuous on $U(\Omega; \mathbb{R}^n)$.

Ingredients of the proof:

- \triangleright Special Lipschitz continuity in the trace direction
- Approximation of functions $\geq -\alpha(1+|X|)$ by functions from $\mathbf{E}(\Omega;\mathbb{R}^N)$ [Alibert, Bouchitté 97]
- ► Rank-one theorem (De Philippis, Rindler 16): Let $u \in BD(\Omega;\mathbb{R}^n)$. Then, for $|E^s u|$ -a.e. $x \in \Omega$, there exist $a(x), b(x) \in \mathbb{R}^n \setminus \{0\}$ such that

$$
\frac{dE^s u}{d|E^s u|} = a(x) \odot b(x) = \frac{1}{2}(a(x) \otimes b(x) + b(x) \otimes a(x)).
$$

We now have

with

$$
\mathcal{F}_{\text{hom}}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}\big(\mathfrak{E} u(x)\big) \, dx + \int_{\Omega} (f_{\text{hom}})^{\#}\big(\frac{dE^s u}{d|E^s u|}(x)\big) \, d|E^s u|(x), & u \in U(\Omega; \mathbb{R}^n), \\ \infty, & \text{else.} \end{cases}
$$

and

$$
g^{\#}(X) := \limsup_{t \to \infty} \frac{g(tX)}{t}.
$$

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty.$ Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$
\mu_j := f(\frac{1}{\varepsilon_j}, \mathfrak{E} u_j(\cdot)) \mathcal{L}^n.
$$

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty.$ Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$
\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E} u_j(\cdot)) \mathcal{L}^n.
$$

By stepwise extracting appropriate subsequences we may get a (not relabeled) sequence such that

- \blacktriangleright lim_{j→∞} $\mathcal{F}_{\varepsilon_j}(u_j)$ equals the lim inf above with all $u_j \in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega;\mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- and $\mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega; \mathbb{R}^n)$.

We may suppose $\liminf_{j\to\infty} \mathcal{F}_{\varepsilon_j}(u_j) < \infty.$ Let us fix some $1 < q < \frac{n}{n-1}$ and define measures

$$
\mu_j := f(\frac{\cdot}{\varepsilon_j}, \mathfrak{E} u_j(\cdot)) \mathcal{L}^n.
$$

By stepwise extracting appropriate subsequences we may get a (not relabeled) sequence such that

- \blacktriangleright lim_{j→∞} $\mathcal{F}_{\varepsilon_j}(u_j)$ equals the lim inf above with all $u_j \in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega;\mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,

• and
$$
\mu_j \stackrel{*}{\rightharpoonup} \mu
$$
 in $M(\Omega; \mathbb{R}^n)$.

Let

$$
\mu = g\mathcal{L}^n + \mu^s.
$$

Goal:

Regular points: for a.e. $x_0 \in \Omega$

$$
g(x_0) = \lim_{\rho \to 0} \lim_{j \to \infty} \frac{\mu_j(B_\rho(x_0))}{|B_\rho(x_0)|} \ge f_{\text{hom}}(\mathfrak{E}u(x_0)).
$$

 \triangleright Singular points:

$$
\mu^s \geq (f_{\rm hom})^\# \big(\tfrac{dE^s u}{d|E^s u|}\big) |E^s u|.
$$

Theorem

Every $u \in BD(\Omega;\mathbb{R}^n)$ is L^q -differentiable a.e. for any $1 \leq q \leq \frac{n}{n-1}$, i.e., there exists a negligible set $N \subset \Omega$ such that for all $x_0 \in \Omega \setminus N$ there exists a matrix $L_{x_0} \in \mathbb{R}^{n \times n}$ such that

$$
\lim_{r \to 0} \frac{1}{r^n} \int_{B_r(x_0)} \left| \frac{u(x) - u(x_0) - L_{x_0}(x - x_0)}{r} \right|^{n-1} dx = 0.
$$

Therefore, u is a.e. approximately differentiable with $L_{x_0} = \nabla u(x_0)$ being the approximate differential.

Proof: $q = 1$ by [Ambrosio, Coscia, Dal Maso 97] + (Korn-)Poincaré inequality for $BD(\Omega;\mathbb{R}^n)$

lim-inf inequality Regular points: De Giorgi's slicing method

Let us take and fix any x_0 where the function u is approximately differentiable and define

$$
\tilde{u}(x) := u(x_0) + \nabla u(x_0) \ (x - x_0).
$$

Usually

$$
\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).
$$

lim-inf inequality Regular points: De Giorgi's slicing method

Let us take and fix any x_0 where the function u is approximately differentiable and define

$$
\tilde{u}(x) := u(x_0) + \nabla u(x_0) \ (x - x_0).
$$

Usually

$$
\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).
$$

But

$$
\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + + \nabla \varphi_i \cdot (u_j - \tilde{u})
$$

and there in no control on the last term L^2 .

Regular points: De Giorgi's slicing method meets Bogovskii's operator

Let us take and fix any x_0 where the function u is approximately differentiable and define

$$
\tilde{u}(x) := u(x_0) + \nabla u(x_0) \ (x - x_0).
$$

Usually

$$
\tilde{u}_{j,i} := \tilde{u} + \varphi_i(u_j - \tilde{u}) \in L^1(\Omega; \mathbb{R}^n).
$$

But

$$
\operatorname{div} \tilde{u}_{j,i} = (1 - \varphi_i) \operatorname{div} \tilde{u} + \varphi_i \operatorname{div} u_j + + \nabla \varphi_i \cdot (u_j - \tilde{u})
$$

and there in no control on the last term L^2 .

$$
\zeta_{j,i} := \text{average of } \nabla \varphi_i \cdot (u_j - \tilde{u}) \text{ in } B_i \setminus B_{i-1}.
$$

By the result of Bogovskiı̆, there exist $z_{j,i} \in W_0^{1,q}(B_i \setminus \overline{B_{i-1}})$ such that

$$
\operatorname{div} z_{j,i} = -\nabla \varphi_i \cdot (u_j - \tilde{u}) + \zeta_{j,i}
$$

with

$$
||z_{j,i}||_{W^{1,q}(B_i \setminus \overline{B_{i-1}})} \leq \frac{C\nu}{(1-\lambda)\rho} ||u_j - \tilde{u}||_{L^q(B_i \setminus \overline{B_{i-1}})}.
$$

15 / 21

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that

 $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_\rho(x_0), \mathbb{R}^n)} \frac{1}{|B_\rho(x_0)|} \int_{B_\rho(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_\rho(x_0)|} \int_{B_\rho(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Averaging: $f_{\text{hom}}(\mathfrak{E}u(x_0)) \leq \liminf_{j \to \infty}$ 1 $\frac{1}{\nu} \sum_{i=1}^{\nu}$ $i=1$ 1 $|B_{\rho}(x_0)|$ $\int_{B_{\rho}(x_0)} f\big(\frac{x}{\varepsilon_j}, \mathfrak{E} u_{j,i}(x)\big) dx.$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Averageing:
$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) \le \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.
$$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Averageing:
$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) \le \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.
$$

 \blacktriangleright First term: \checkmark

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Averageing:
$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) \le \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.
$$

- \blacktriangleright First term: \checkmark
- Initial term: $\lambda \nearrow 1$

Now define $u_{j,i} := \tilde{u}_{j,i} + z_{j,i} \in LU(\Omega;\mathbb{R}^n)$. Notice that $u_{j,i} - \tilde{u} = \varphi_i(u_j - \tilde{u}) + z_{j,i} \in LU_0(B_\rho(x_0); \mathbb{R}^n).$

Then

$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) = \lim_{j \to \infty} \inf_{\varphi \in LU_0(B_{\rho}(x_0), \mathbb{R}^n)} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u(x_0) + \mathfrak{E}\varphi(x)\right) dx
$$

$$
\leq \liminf_{j \to \infty} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx
$$

Averageing:
$$
f_{\text{hom}}(\mathfrak{E}u(x_0)) \le \liminf_{j \to \infty} \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{1}{|B_{\rho}(x_0)|} \int_{B_{\rho}(x_0)} f\left(\frac{x}{\varepsilon_j}, \mathfrak{E}u_{j,i}(x)\right) dx.
$$

- \blacktriangleright First term: \checkmark
- Initial term: $\lambda \nearrow 1$
- Second term: L^q -differentiability

We suppose that for every $\eta > 0$ there are

- \blacktriangleright $\beta_n > 0$
- a Carathéodory function $c^n : \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second,

such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}^{n \times n}_{sym}$

$$
|f(x, X) - c^{\eta}(x, X)| \le \eta (|X_{\text{dev}}| + (\text{tr } X)^2) + \beta_{\eta}.
$$

We will refer to this property as *asymptotic convexity*.

Let us notice that for f in our setting we may even suppose

- ► c^{η} to be non-negative with $c^{\eta}(x, 0) = 0$ for every $x \in \mathbb{R}^n$,
- dom $(c^*(x, _))$ to be closed for a.e. $x \in \mathbb{R}^n$.

We suppose that for every $\eta > 0$ there are

- \blacktriangleright $\beta_n > 0$
- a Carathéodory function $c^n : \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ that is \mathbb{I}^n -periodic in the first variable and convex in the second,

such that for a.e. $x \in \mathbb{R}^n$ and all $X \in \mathbb{R}^{n \times n}_{sym}$

$$
|f(x, X) - c^{\eta}(x, X)| \le \eta (|X_{\text{dev}}| + (\text{tr } X)^2) + \beta_{\eta}.
$$

We will refer to this property as *asymptotic convexity*.

Let us notice that for f in our setting we may even suppose

- ► c^{η} to be non-negative with $c^{\eta}(x, 0) = 0$ for every $x \in \mathbb{R}^n$,
- dom $(c^*(x, _))$ to be closed for a.e. $x \in \mathbb{R}^n$.

[Demengel, Qi 90]: For such convex function c

$$
\Gamma\text{-}\lim_{\varepsilon \to 0} \mathcal{C}_{\varepsilon} = \mathcal{C}_{\text{hom}} \quad \text{with} \quad \mathcal{C}_{\text{hom}}(u) := \left\{ \begin{array}{cc} \int_{\Omega} c_{\text{hom}}(Eu(x)), & u \in U(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{array} \right.
$$

where
$$
c_{\text{hom}}(X) = \inf_{\varphi \in LU_{\text{per}}(\mathbb{I}^n; \mathbb{R}^n)} \int_{\mathbb{I}^n} c(x, X + \mathfrak{E}\varphi(x)) dx
$$
 and

$$
c_{\rm hom}\big(Eu(x)\big)=c_{\rm hom}\big(\mathfrak{E} u(x)\big)\ dx+(c_{\rm hom})^\#\left(\frac{dE^s u}{d|E^s u|}(x)\right)d|E^s u|(x).
$$

We have

$$
\mu_j:=f(\tfrac{\cdot}{\varepsilon_j},\mathfrak{E} u_j(\cdot))\mathcal{L}^n.
$$

We may suppose

- \blacktriangleright lim_{j→∞} $\mathcal{F}_{\varepsilon_j}(u_j)$ equals the lim inf above with all $u_j \in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega;\mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- $\blacktriangleright \mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega;\mathbb{R}^n)$,

•
$$
(|\mathfrak{E}_{\text{dev}} u_j| + (\text{div } u_j)^2) \mathcal{L}^n \stackrel{*}{\rightharpoonup} \sigma \text{ in } M(\Omega).
$$

We have

$$
\mu_j:=f(\tfrac{\cdot}{\varepsilon_j},\mathfrak{E} u_j(\cdot))\mathcal{L}^n.
$$

We may suppose

- \blacktriangleright lim_{j→∞} $\mathcal{F}_{\varepsilon_j}(u_j)$ equals the lim inf above with all $u_j \in LU(\Omega;\mathbb{R}^n)$,
- $u_j \to u$ in $L^q(\Omega;\mathbb{R}^n)$ due to the lower bound on f and since LU is compactly embedded in L^q ,
- $\blacktriangleright \mu_j \stackrel{*}{\rightharpoonup} \mu$ in $M(\Omega;\mathbb{R}^n)$,

•
$$
(|\mathfrak{E}_{\text{dev}} u_j| + (\text{div } u_j)^2) \mathcal{L}^n \stackrel{*}{\rightharpoonup} \sigma \text{ in } M(\Omega).
$$

For each $\eta > 0$

$$
f(x, X) \geq c^{\eta}(x, X) - \eta(|X_{\text{dev}}| + (\text{tr } X)^2) - \beta_{\eta}
$$

\n
$$
\mu \geq c_{\text{hom}}^{\eta}(Eu) - \eta \sigma - \beta_{\eta} \mathcal{L}^n
$$

\n
$$
\mu^s \geq (c_{\text{hom}}^{\eta})^{\#}(\frac{dE^s u}{d|E^s u|})|E^s u| - \eta \sigma^s
$$

Since

$$
\lim_{\eta \to 0} (c_{\text{hom}}^{\eta})^{\#}(X) = (f_{\text{hom}})^{\#}(X),
$$

and

$$
\mu^s \ge (f_{\rm hom})^\# \left(\frac{dE^s u}{d|E^s u|} \right) |E^s u|.
$$

Theorem

Let us have a Carathéodory function $f : \mathbb{R}^n \times \mathbb{R}^{n \times n}_{sym} \to \mathbb{R}$ that

- is \mathbb{I}^n -periodic in the first variable,
- \blacktriangleright has Hencky plasticity growth.

Let us denote

$$
\mathcal{F}_{\varepsilon}(u) := \begin{cases} \int_{\Omega} f\left(\frac{x}{\varepsilon}, \mathfrak{E}u(x)\right) dx, & u \in LU(\Omega; \mathbb{R}^n), \\ \infty, & \text{else,} \end{cases}
$$

and

$$
\mathcal{F}_{\text{hom}}(u) := \begin{cases} \int_{\Omega} f_{\text{hom}}(\mathfrak{E} u(x)) \, dx + \int_{\Omega} (f_{\text{hom}})^{\#} \left(\frac{dE^s u}{d|E^s u|}(x) \right) d|E^s u|(x), & u \in U(\Omega; \mathbb{R}^n), \\ \infty, & \text{else.} \end{cases}
$$

Then

$$
\Gamma(L^1)\text{-}\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon} \leq \mathcal{F}_{\text{hom}},
$$

while for $u \in LU(\Omega;\mathbb{R}^n)$ even

$$
\Gamma(L^1) \text{-} \lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u) = \mathcal{F}_{\text{hom}}(u).
$$

The latter holds for all $u \in L^1(\Omega;\mathbb{R}^n)$ if f is asymptotically convex.

Theorem

With assumptions and denotations as above, including the asymptotic convexity, the following diagrams commute:

Thank you for your attention