
Non-trivial pinning threshold for

an evolution equation involving

long range interactions

Martin Jesenko

joint work with Patrick Dondl

Workshop: ”New trends in the variational modeling of failure phenomena”
Vienna, August 2018



Moving of interfaces

An interface moves through a media driven by a constant force F upwards. In the
media, there are obstacles that act with a force f(x, y) downwards.

We suppose the interface to move accroding to the curvature flow. Thus

vn = κ − f + F.

Starting with a flat interface u = 0 at time 0, we suppose the interface to be given
by a graph at all times. Assuming the gradient to be small, we arrive at

∂u

∂t
(x, t) = 4u(x, t)− f(x, u(x, t)) + F
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Deterministic periodic setting

Theorem (Dirr, Yip)

If the array of obstacles is deterministic and 1-perodic (positions and strengths),

then there exists F∗ > 0 such that

Pinning

for any 0 ≤ F ≤ F∗ there exists a
stationary solution UF > 0, and
because of the comparison principle
the interface ”gets pinned” under the
graph of UF .

Depinning

for any F > F∗ there exists an unique
TF > 0 and a spatially 1-periodic
solution UF with

UF ( , t+ TF ) = UF ( , t) + 1.

Dirr, N.; Yip, N. K. Pinning and de-pinning phenomena in front propagation in

heterogeneous media. Interfaces Free Bound. 8 (2006), no. 1, 79–109.
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Quenched Edwards-Wilkinson model

We suppose that the obstacles have the same shape and (time-independent)
random positions and strenghts. More precisely, the moving is determined by the
equation

∂u(x, t, ω)

∂t
= 4u(x, t, ω)− f(x, u(x, t, ω), ω) + F

with the force of the obstacle field being the random function

f(x, y, ω) =
∑
i

fi(ω)ϕ(x− xi(ω), y − yi(ω)).

We assume

Condition 1 (Shape of obstacles)

There exist r0, r1 > 0 with r1 >
√
nr0 so that

ϕ(x, y) ≥ 1 for ‖(x, y)‖∞ ≤ r0 and ϕ(x, y) = 0 for ‖(x, y)‖ ≥ r1.

Condition 2 (Obstacle positions and strengths)

The random distribution of obstacle sites {(xi, yi)}i∈N ⊂ Rn × [r1,∞) and
strengths {fi}i∈N ⊂ [0,∞) satisfy:

I {(xi, yi)}i∈N are distributed according to an (n+ 1)-dimensional Poisson
point process on Rn × [r1,∞) with intensity λ > 0,

I {fi}i∈N are independent and identically distributed strictly positive random
variables that are independent of {(xi, yi)}i∈N .
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Pinning result

Theorem (Dirr, Dondl, Scheutzow)

If Conditions 2.1 and 2.2 are satisfied, then there exists F∗ > 0 and a
non-negative v : Rn × Ω→ [0,∞) so that

0 ≥ 4v(x, ω)− f(x, v(x, ω), ω) + F∗

almost surely. Hence, for F ≤ F∗ any solution for Quenched Edwards-Wilkinson
model with trivial initial condition gets pinned.

Dirr, N.; Dondl, P. W.; Scheutzow, M. Pinning of interfaces in random media. Interfaces

Free Bound. 13 (2011), no. 3, 411–421

Dondl, P. W.; Scheutzow, M. Positive speed of propagation in a semilinear parabolic

interface model with unbounded random coefficients. Netw. Heterog. Media 7 (2012),

no. 1, 137–150
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Long range interactions

We will explore the same question for the evolution problem

∂u(x, t, ω)

∂t
= −(−4)su(x, t, ω)− f(x, u(x, t, ω), ω) + F, u(x, 0, ω) = 0

Question

Does there exist a F∗ > 0 and a non-negative v : Rn × Ω→ [0,∞) so that

0 ≥ −(−4)sv(x, ω)− f(x, v(x, ω), ω) + F∗

almost surely?

Our goal is to prove

Answer

There exists such F∗ and v, and the function u(x, t, ω) := min{v(x, ω), F∗t} is a
viscosity supersolution of the evolution problem for F ≤ F∗ almost surely.

For one dimensional case this has been already done.

Throm, S. Pinning of interfaces in a random elastic medium. Diplom-Arbeit.

Dondl, P. W.; Scheutzow, M.; Throm, S. Pinning of interfaces in a random elastic

medium and logarithmic lattice embeddings in percolation. Proc. Roy. Soc. Edinburgh

Sect. A 145 (2015), no. 3
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Examples I

I Wetting line when pulling sandpaper out of water (s = 1
2

)

[by Sebastian Throm]

Dondl, P. W.; Scheutzow, M.; Throm, S. Pinning of interfaces in a random elastic

medium and logarithmic lattice embeddings in percolation. Proc. Roy. Soc.

Edinburgh Sect. A 145 (2015), no. 3

Ertaş, D.; Kardar, M. Critical dynamics of contact line depinning, Phys. Rev. E 49

(1994)
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Examples II

I Motion of crack fronts in heterogeneous media

[from the first article below]

Gao, H.; Rice J. R. A First-Order Perturbation Analysis of Crack Trapping by

Arrays of Obstacles, J. Appl. Mech 56 (4) (1989), 828-836

Schmittbuhl, J.; Roux, S.; Vilotte, J.-P.; Måløy, K. J. Interfacial Crack Pinning:

Effect of Nonlocal Interactions, Phys. Rev. Lett. 74, 1787 (1995)

Ramanathan, S.; Ertaş, D.; Fisher, D. Quasistatic Crack Propagation in

Heterogeneous Media Phys. Rev. Lett. 79, 873 (1997)
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Examples III

I fractional diffusion equations

Considering the probabilistic view-point of diffusion, here we allow for
arbitrary big jumps (with corresponding weighted probabilities).

I equations describing the dynamics of fluids in porous media

I dislocations dynamics that is used to explain the plastic deformation of
crystals
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Examples IV

I study of displacive solid-solid phase transformations (2-D example)

Dondl, P. W.; Bhattacharya, K. Effective behavior of an interface propagating

through a periodic elastic medium. Interfaces Free Bound. 18 (2016), no. 1

They show that a nearly flat interface is given by the graph of the function g
which evolves according to the equation

∂g

∂t
(x, t) = −(−4)1/2g(x, t) + ϕ(x, g(x)) + F.

Then

Theorem (Bhattacharya, Dondl)

If the array of obstacles is deterministic and 1-perodic (positions and strengths),
then there exists F∗ > 0 such that

Pinning

for any 0 ≤ F ≤ F∗

Depinning

for any F > F∗
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Fractional Laplace operator

(At least) for u ∈ S, we may define fractional Laplace operator for s ∈ (0, 1)

I with singular integral

(−4)su(x) := C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

where

C(n, s)−1 :=

∫
Rn

1− cos ζ1

|ζ|n+2s
dζ,

I via Fourier-Transform

F
(

(−4)su
)

(ξ) = |ξ|2s(Fu)(ξ),

I as a regular integral

−(−4)su(x) =
C(n, s)

2

∫
Rn

u(x+ h) + u(x− h)− 2u(x)

|h|n+2s
dh.

Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev

spaces. Bull. Sci. Math. 136 (2012), no. 5

Kwaśnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc.

Appl. Anal. 20 (2017), no. 1
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Extension property

If for a given f : Rn → R, we solve

u(x, 0) = f(x) for x ∈ Rn,
4u(x, y) = 0 for x ∈ Rn, y > 0,

then − ∂
∂y
u(x, 0) = C(−4)1/2f(x).

For other s ∈ (0, 1): If

u(x, 0) = f(x) for x ∈ Rn,

div
(
y1−2s∇u(x, y)

)
= 0 for x ∈ Rn, y > 0,

then

lim
y↘0

(
y1−2s ∂u

∂y
(x, y)

)
= C(−4)sf(x).

Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian,

Comm. Partial Differential Equations 32 (2007)
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Idea for QEW model

For QEW model, we construct a supersolution

by finding a local radial symmetric solution and lifting it:

4vin = Fin

(
r
rin

)m
and 4vout = −Fout, v′out(rout) = 0.
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Dirichlet problem for fractional Laplacian

What is the right notion of Dirichlet problem for the fractional Laplacian,
e.g. with zero boundary condition? The fact is that (−4)s is non-local!

We consider

(−4)su = f in Ω,

u = 0 in Rn \ Ω.

The problem

(−4)sv(x) = 1 for |x| < R,

v(x) = 0 for |x| ≥ R

has the solution v with

v(x) =
Γ(n

2
)

22sΓ(n
2

+ s)Γ(1 + s)
(R2 − |x|2)s

for |x| < R.
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Local radial solution

Let us look at the problem

−(−4)sv(x) + s(x) = 0 for |x| < R,

v(x) = 0 for |x| ≥ R.

We may compute

v(x) =

∫
BR(0)

Gn,s(x, y)s(y) dy

with Gn,s being the Green function

Gn,s(x, y) =
Γ(n

2
)

22sπ1/nΓ(s)2

1

|x− y|n−2s
Φn,s(x, y)

where

Φn,s(x, y) =

∫ ζ

0

1

w1−s
1

(1 + w)n/2
dw and ζ =

1

R2

(R2 − |x|2)(R2 − |y|2)

|x− y|2
.

For given F1, F2 > 0, the solution

−(−4)sv(x) =

{
F1, if |x| < r0,
−F2, if r0 < |x| < R,

v(x) = 0 if |x| ≥ R,

is therefore given by

v(x) = F2

∫
BR(0)

Gn,s(x, y) dy − (F1 + F2)

∫
Br0

(0)
Gn,s(x, y) dy.
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Local radial solution

Let r0 = qR with q ∈ (0, 1). We would like to explore the interplay of these two
integrals, and find an appropriate scaling for F1, F2, q in order for the solution the
behave as desired. Pictures for

R = 10, q = 0,01, s =
1

2
,
F1

F2
= 0, 10, 50, 150
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Flat supersolution

The goal: to assess when v ≤ 0 and v radially increasing. By estimating the
integrals, we arrive at

F1 + F2

F2
≥

n

2s

(1 + q)n

(1− q2)s
1

qn
.

Then we may define

vflat : Rn × Ω→ R, vflat(x, ω) := min
some obstacles

vlocal(x− xobstacle).

Since

−(−4)su(x) = C P.V.

∫
Rn

u(y)− u(x)

|y − x|n+2s
dy,

we have the right inequality

−(−4)svflat(x) = C P.V.

∫
Rn

vflat(y)− vflat(x)

|y − x|n+2s
dy ≤ −(−4)svlocal(x− xa(ω)).
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Partition of the space
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Percolation

Theorem (Dondl, Scheutzow, Throm)

Suppose z ∈ Zn+1 is open with probability p ∈ (0, 1) and closed otherwise, with
different sites receiving independent states. For every nondecreasing function
H : N→ N with

lim inf
k→∞

H(k)

log k
> 0,

there exists pH = pH(n) ∈ (0, 1) such that for every p ∈ (pH , 1) there exists a.s. a
(random) function L : Zn → N with the following properties:

I For each a ∈ Zn, the site (a, L(a)) ∈ Zn+1 is open.

I For any a, b ∈ Zn, a 6= b, it holds |L(a)− L(b)| ≤ H(‖a− b‖1).
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Percolation result applied

Take any S > 0 such that P (obstacle strength ≥ S) =: pS > 0.

Probability that in a cuboid with volume V there is a centre of an obstacle with
strength at least S is 1− exp(−λV pS).

Thus, if 1− exp(−λh(l − 2r1)npS) > pH , i.e.

h(l − 2r1)n > −
1

λpS
log(1− pH)

then the Percolation theorem is applicable.

Hence, there exists a.s. a random function L : Zn × Ω→ N such that

I for each a ∈ Zn, the cuboid Q
L(a)
a contains a center of an obstacle (xa, ya)

with strength at least S,
I for any a, b ∈ Zn, we have |L(a)− L(b)| ≤ H(‖a− b‖1).

Let R ≥
√
n
(
l + d

2
− r1

)
. We define the flat supersolution (with given F1, F2, q)

vflat : Rn × Ω→ R, vflat(x, ω) := min
a∈Zn

vlocal(x− xa(ω)).

then vflat satisfies a.s. in the sense of distributions (and in the sense of viscosity
solutions)

0 ≥ −(−4)svflat(x)−
∑
a∈Zn

Sϕ(x− xa, vflat(x)) + F

for all F ≤ min{S − F1, F2}.
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Lifting function

Proposition

Let h, d, l > 0 and s ∈ (0, 1). Suppose y : Zn → R has the following property

|ya − yb| ≤ 2h‖a− b‖α1

for some 0 < α < 2s. Then there exist a smooth function ulift : Rn → R and
constants C0, C1, C2 depending only on n, s, α such that:

I ulift(x) = ya if x ∈ Qa for some a ∈ Zn,

I ‖D2ulift‖∞ ≤ C0
h
d2

,

I ‖(−4)sulift‖∞ ≤ C1(d+ l)2−2s h
d2

+ C2
h

(d+l)2s
.
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Right scaling

Let us fix S > 0 such that P (obstacle strength ≥ S) = pS > 0. We must be able to
choose appropriate h, l, d, R, q, F1, F2:
1 We must have enough obstacles for the percolation result:

h(l − 2r1)n > −
1

λpS
log(1− pH)

2 The local solution must be non-positive and radially increasing:

F1 + F2

F2
≥

n

2s

(1 + q)n

(1− q2)s
1

qn

3 The local solution must stay inside an obstacle:
We scale the local solutions so that |ulocal| < r0. This will hold if

πn/2

22sπ1/nΓ(s)2s2(n
2
− s)

F1r
2s
0 ≤ r0

4 The cost of lifting:
We have to lift the flat supersolution to the obstacles. Suppose we ”spend”
F ∗ := 1

2
min{S − F1, F2} on it. Then we must achieve |(−4)sulift| ≤ F ∗, or

C1(d+ l)2−2s h

d2
+ C2

h

(d+ l)2s
≤

1

2
min{S − F1, F2}
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Right scaling

We choose d := l, and let us take for the sake of simplicity R = 2l
√
n = 1

q
r0.

Since we will choose l > 4r1 (and therefore l− 2r1 ≥ l
2

), the first will be fulfilled if

hln > −2n 1
λpS

log(1− pH). Employing 2l = r0
q
√
n

, we arrive at

h

qn
> A1 := −

22nnn/2

rn0

1

λpS
log(1− pH)

The second will surely be fulfilled if (with assuming just q < 1
2

)

F1

F2
qn ≥ A2 :=

n

2s

( 3
2

)n

( 3
4

)s

For the third, we must get

F1 ≤ A3 := r1−2s
0

22sπ1/nΓ(s)2s2(n
2
− s)

πn/2

As for the last, it should hold (4C1 + C2) h
(2l)2s

≤ 1
2

min{S − F1, F2}, or, with

A4 := 4C1+C2

r2s0
,

A4hq
2s ≤

1

2
min{S − F1, F2}
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Right scaling

The question is if for given Ai and S, there exist such q ∈ (0, 1) and F1, F2, h > 0.
Let q be free and set

F1 := min{A3,
S
2
}, F2 :=

min{A3,
S
2
}

A2
qn.

Thus, the second and the third inequality are fulfilled. Obviously, for q small
enough

min{S − F1, F2} = F2 =
min{A3,

S
2
}

A2
qn.

So the two remaining inequalities read

h

qn
> A1,

h

qn
q2s ≤ A5

with A5 :=
min{A3,

S
2
}

A2A4
. Hence, we first fix the quotient h

qn
, and then choose q

sufficiently small. Thus, all the inequalities are fulfilled, and the pinning occurs at
least for F ≤ F ∗.
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Thank you for your attention


