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Moving of interfaces
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An interface moves through a media driven by a constant force F' upwards. In the
media, there are obstacles that act with a force f(x,y) downwards.

We suppose the interface to move accroding to the curvature flow. Thus

vp =x— f+ F.

Starting with a flat interface u = 0 at time 0, we suppose the interface to be given
by a graph at all times. Assuming the gradient to be small, we arrive at

u

5 (z,t) = Au(z,t) — f(z,u(z,t) + F



Deterministic periodic setting

Theorem (Dirr, Yip)

If the array of obstacles is deterministic and 1-perodic (positions and strengths),

Ia Dirr, N.; Yip, N. K. Pinning and de-pinning phenomena in front propagation in
heterogeneous media. Interfaces Free Bound. 8 (2006), no. 1, 79-109.



Deterministic periodic setting

Theorem (Dirr, Yip)

If the array of obstacles is deterministic and 1-perodic (positions and strengths),
then there exists Fix > 0 such that

Pinning Depinning

for any 0 < F < F there exists a for any F > F, there exists an unique
stationary solution Urp > 0, and Tr > 0 and a spatially 1-periodic
because of the comparison principle solution Up with

the interface ”gets pinned” under the

graph of Up. Up(_,t+Tp)=Ur(_,t)+1.

@ Dirr, N.; Yip, N. K. Pinning and de-pinning phenomena in front propagation in
heterogeneous media. Interfaces Free Bound. 8 (2006), no. 1, 79-109.



Quenched Edwards-Wilkinson model

We suppose that the obstacles have the same shape and (time-independent)
random positions and strenghts. More precisely, the moving is determined by the
equation
Au(z, t,w)
ot
with the force of the obstacle field being the random function

fla,y,w) = Z filw)e(z —zi(w), y — yi(w))-

= A’L"("Eft’“)) - f(m,u(z,t,w),w) +F

We assume
Condition 1 (Shape of obstacles)
There exist rg,r1 > 0 with 71 > /nrg so that

o(z,y) > 1 for ||(z,y)|lec <70 and @(z,y) = 0 for ||(z,y)|| > r1.

Condition 2 (Obstacle positions and strengths)

The random distribution of obstacle sites {(zi, y:)}ien C R™ X [r1,00) and
strengths {f;}ien C [0, c0) satisfy:
> {(x;,vi)}ien are distributed according to an (n + 1)-dimensional Poisson
point process on R™ X [r1,00) with intensity A > 0,

» {fi}ien are independent and identically distributed strictly positive random
variables that are independent of {(z;, yi)}ien -



Pinning result

Theorem (Dirr, Dondl, Scheutzow)

If Conditions 2.1 and 2.2 are satisfied, then there exists Fyx > 0 and a
non-negative v : R™ x Q — [0, 00) so that

0 2 A’U(mrw) - f(m,v(m,w),w) + F

almost surely. Hence, for F < Fy any solution for Quenched Edwards-Wilkinson
model with trivial initial condition gets pinned.

@ Dirr, N.; Dondl, P. W.; Scheutzow, M. Pinning of interfaces in random media. Interfaces
Free Bound. 13 (2011), no. 3, 411-421

@ Dondl, P. W.; Scheutzow, M. Positive speed of propagation in a semilinear parabolic
interface model with unbounded random coefficients. Netw. Heterog. Media 7 (2012),
no. 1, 137-150

4/1



Long range interactions

We will explore the same question for the evolution problem

Ou(z, t,w)

ot = _(_A)su(zvtvw) - f(x7u($)t7w)vw) +F, u(x,O,w) =0

Question

Does there exist a Fx > 0 and a non-negative v : R™ X  — [0, 00) so that
0 2 —(—A)Sv(w,w) - f(x,v(m,w),w) + By
almost surely?

Our goal is to prove

Answer

There exists such Fix and v, and the function u(z,t,w) := min{v(z,w), Fxt} is a
viscosity supersolution of the evolution problem for F' < F almost surely.

For one dimensional case this has been already done.

@ Throm, S. Pinning of interfaces in a random elastic medium. Diplom-Arbeit.

@ Dondl, P. W.; Scheutzow, M.; Throm, S. Pinning of interfaces in a random elastic
medium and logarithmic lattice embeddings in percolation. Proc. Roy. Soc. Edinburgh
Sect. A 145 (2015), no. 3



Examples 1

» Wetting line when pulling sandpaper out of water (s = %)

A

Rough plate

T
\ \ \\\\\\\
\\\ \ \\\\\\\g\ Ulz, 2)

[by Sebastian Throm]

ﬁ Dondl, P. W.; Scheutzow, M.; Throm, S. Pinning of interfaces in a random elastic
medium and logarithmic lattice embeddings in percolation. Proc. Roy. Soc.
Edinburgh Sect. A 145 (2015), no. 3

ﬁ Ertas, D.; Kardar, M. Critical dynamics of contact line depinning, Phys. Rev. E 49
(1994)
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Examples IT

» Motion of crack fronts in heterogeneous media

FIG. 1. Geometry of the interfacial crack modeled in this
letter. The crack front is planar z = 0. It is aligned along
the x direction, and it propagates along y. A pure tensile stress
is applied at infinity, so that the crack opens in mode I. [from the first article below]

ﬁ Gao, H.; Rice J. R. A First-Order Perturbation Analysis of Crack Trapping by
Arrays of Obstacles, J. Appl. Mech 56 (4) (1989), 828-836

ﬁ Schmittbuhl, J.; Roux, S.; Vilotte, J.-P.; Malgy, K. J. Interfacial Crack Pinning:
Effect of Nonlocal Interactions, Phys. Rev. Lett. 74, 1787 (1995)

@ Ramanathan, S.; Ertag, D.; Fisher, D. Quasistatic Crack Propagation in
Heterogeneous Media Phys. Rev. Lett. 79, 873 (1997)
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Examples IT1

» fractional diffusion equations

Considering the probabilistic view-point of diffusion, here we allow for
arbitrary big jumps (with corresponding weighted probabilities).

» equations describing the dynamics of fluids in porous media

> dislocations dynamics that is used to explain the plastic deformation of
crystals



Examples IV

» study of displacive solid-solid phase transformations (2-D example)

ﬁ Dondl, P. W.; Bhattacharya, K. Effective behavior of an interface propagating
through a periodic elastic medium. Interfaces Free Bound. 18 (2016), no. 1

They show that a nearly flat interface is given by the graph of the function g
which evolves according to the equation

2 (0,0) = ~(=0) g2, 1) + il g(a)) + F,

Then

Theorem (Bhattacharya, Dondl)

If the array of obstacles is deterministic and 1-perodic (positions and strengths),
then there exists Fix > 0 such that

Pinning Depinning

for any 0 < F < F, for any F > F
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Fractional Laplace operator

(At least) for u € 8, we may define fractional Laplace operator for s € (0,1)

» with singular integral

(=)

s u(z) — u(y)
(=A)*u(z) := C(n,s) P.V. o W dy

where

C(n, )~ ::/ 1—cosqy dc,

|<|n+23

via Fourier-Transform
F((=2)%u)(©) = 1€ (Fu)(©),
as a regular integral

_ C(n,s) u(x + h) + u(x — h) — 2u(z)
2 R™ ‘h|n+25

—(=A)%u(z) dh.

Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev
spaces. Bull. Sci. Math. 136 (2012), no. 5

Kwasnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc.
Appl. Anal. 20 (2017), no. 1
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Extension property

If for a given f : R” — R, we solve
u(z,0) = f(z) for z € R",
Au(z,y) =0 forz € R", y >0,
then — 2 u(z,0) = C(=L)'/2f ().
For other s € (0,1): If
u(z,0) = f(z) for z € R™,
div (y1_2SVu(x,y)> =0 for x € R", y > 0,

then

. _9s0u — C(— A f(x
tim, (v 5, @) ) = C-ar @)

@ Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007)
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Idea for QEW model

For QEW model, we construct a supersolution

by finding a local radial symmetric solution and lifting it:

N

Tin,

m
Aviy = Fiy (L) and  Avout = —Fout, 'U(/)ut (Tout) =0.

Tin



Dirichlet problem for fractional Laplacian

What is the right notion of Dirichlet problem for the fractional Laplacian,
e.g. with zero boundary condition? The fact is that (—A)#® is non-local!

13 /1



Dirichlet problem for fractional Laplacian
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We consider

(=2A)°u=f inQ,
u=0 inR"\Q.
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Dirichlet problem for fractional Laplacian

What is the right notion of Dirichlet problem for the fractional Laplacian,
e.g. with zero boundary condition? The fact is that (—A)#® is non-local!

We consider
(=2A)°u=f inQ,
u=0 inR"\Q.

The problem

(=A)*v(z) =1 for |z| < R,
v(z) =0 for|z| >R

has the solution v with

r(3) .
@ = @ srass D

for |z| < R.
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Local radial solution

Let us look at the problem
—(=A)%v(z) + s(x) =0 for |z| < R,
v(z) =0 for |z| > R.
We may compute
@ = [ Guale)st) dy
Br(0)
with Gp,s being the Green function

r(2) 1

Gnys(mv y) = 22S7T1/”F(s)2 |:17 _ y|n_23 q>n,8("£7 y)
where
<1 1 1 (R? —[zP)(R? — [y*)
(Dn,s(z,y)—/(; FW dw and C_ﬁ P
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Local radial solution

Let us look at the problem
—(=A)%v(z) + s(x) =0 for |z| < R,
v(z) =0 for |z| > R.
We may compute
@ = [ Guale)st) dy
Br(0)
with Gp,s being the Green function

r(2) 1

Gnys(xv y) = 22S7T1/”F(s)2 |37 _ y|n_23 q>n,8("£7 y)
where
<1 1 1 (R? —[zP)(R? — [y*)
(Dn,s(z,y)—/(; FW dw and C_ﬁ P

For given Fi, Fz > 0, the solution

(L ANS _ Fy, if |z| < 7o,
Corw = { T RS
v(z) = 0 if|z| >R,

is therefore given by

W@ =F [ Gy dy—(F+F) [ Gl dy.
BRr(0) By (0)

14 /1



Local radial solution

Let ro = gR with g € (0,1). We would like to explore the interplay of these two
integrals, and find an appropriate scaling for F7, F»,q in order for the solution the
behave as desired. Pictures for

X

R=10, ¢=001, s= =0, 10, 50,150

1
2" Fy




Flat supersolution

The goal: to assess when v < 0 and v radially increasing. By estimating the
integrals, we arrive at

Bt+F n (1+g" 1
Fp T 2s5(1—¢%)% g™
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Flat supersolution

The goal: to assess when v < 0 and v radially increasing. By estimating the
integrals, we arrive at

Bt+F n (1+g" 1
By T 2s(1-¢?)% g
Then we may define

Vag  R™ X Q@ =R, vgag (wi) = min vlocal(x - 27obstacle)'
some obstacles
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Flat supersolution

The goal: to assess when v < 0 and v radially increasing. By estimating the
integrals, we arrive at

Bt+F n (1+g" 1
Fy T 2s(1-¢*)°q
Then we may define

Vag  R™ X Q@ =R, vgag (wi) = min vlocal(x - 27obstacle)'
some obstacles

Since
u(y) — u(@)

—(=2)3u(z) = C P.V.
(~2)°u(z) [

we have the right inequality

=8 @) = € v, [ 2D gy < () o = (o)
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Theorem (Dondl, Scheutzow, Throm)

Suppose z € Z" 1 is open with probability p € (0,1) and closed otherwise, with
different sites receiving independent states. For every mondecreasing function
H : N — N with P

lim inf (k)

k—oo logk

>0,
there exists pg = pu(n) € (0,1) such that for every p € (pm, 1) there exists a.s. a
(random) function L : Z™ — N with the following properties:

» For each a € Z", the site (a, L(a)) € Z" 1 is open.

> For any a,b € Z™, a # b, it holds |L(a) — L(b)| < H(|la — b||1).
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Percolation result applied

Take any S > 0 such that P(obstacle strength > S) =: pg > 0.

Probability that in a cuboid with volume V' there is a centre of an obstacle with
strength at least S is 1 — exp(—AVpg).
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Percolation result applied

Take any S > 0 such that P(obstacle strength > S) =: pg > 0.

Probability that in a cuboid with volume V' there is a centre of an obstacle with
strength at least S is 1 — exp(—AVpg).

Thus, if 1 — exp(—Ah(l — 2r1)"ps) > py, i.e.

1
h(l —2r1)" > ———log(1 — pm)
Aps

then the Percolation theorem is applicable.
Hence, there exists a.s. a random function L : Z™ x Q — N such that

» for each a € Z", the cuboid QaL(a) contains a center of an obstacle (za,ya)
with strength at least S,
» for any a,b € Z™, we have |L(a) — L(b)| < H(|la — b]|1).

19 /1



Percolation result applied

Take any S > 0 such that P(obstacle strength > S) =: pg > 0.

Probability that in a cuboid with volume V' there is a centre of an obstacle with
strength at least S is 1 — exp(—AVpg).

Thus, if 1 — exp(—Ah(l — 2r1)"ps) > py, i.e.

1
h(l —2r1)" > ———log(1 — pm)
Aps

then the Percolation theorem is applicable.
Hence, there exists a.s. a random function L : Z™ x Q — N such that

» for each a € Z", the cuboid QaL(a) contains a center of an obstacle (za,ya)
with strength at least S,
» for any a,b € Z™, we have |L(a) — L(b)| < H(|la — b]|1).

Let R > +/n (l + g — r1>. We define the flat supersolution (with given Fi, F2, q)
Vfat - R™ x Q — R’ vﬂat(zzw) = anenZI’l”' 7Jlocal(z - $a(W))-

then vg,t satisfies a.s. in the sense of distributions (and in the sense of viscosity
solutions)

0> —(—=A)°vaag(z) — Z Sp(r — Ta, vAar(T)) + F
agZ™
for all F < min{S — Fy, F>}.

19 /1



Lifting function

Let h,d,l >0 and s € (0,1). Suppose y : Z™ — R has the following property
[Ya — yp| < 2h[la — bl|f

for some 0 < ae < 2s. Then there exist a smooth function wjg : R™ — R and
constants Co, C1,C2 depending only on n,s,a such that:

> wie(T) = Yo if T € Qa for some a € Z™,
> || D2uiiti]loo < Cods,

> [[(=2)*ust oo < C1(d+ l)z—zsd% + C2W-

20/1



Right scaling

Let us fix S > 0 such that P(obstacle strength > S) = pg > 0. We must be able to
choose appropriate h,l,d, R, q, F1, Fa:
We must have enough obstacles for the percolation result:

1
h(l —2r1)" > ———log(1 — pg)
Aps
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We scale the local solutions so that |ujcal| < 70. This will hold if
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Right scaling

Let us fix S > 0 such that P(obstacle strength > S) = pg > 0. We must be able to
choose appropriate h,l,d, R, q, F1, Fa:
We must have enough obstacles for the percolation result:

1
h(l —2r1)" > ———log(1 — pg)
Aps

The local solution must be non-positive and radially increasing:

Fi + Fy S n 14+¢™ 1

P T 2s(1-¢q?)° qn

The local solution must stay inside an obstacle:
We scale the local solutions so that |ujcal| < 70. This will hold if

an/2

Fir2s <r
22sm1/nT(s)2s2(% —5) 0~ C

The cost of lifting:
We have to lift the flat supersolution to the obstacles. Suppose we ”spend”

F* .=z mln{S Fi, F>} on it. Then we must achieve |(—A)%uyg| < F*, or
h h 1
Ci(d +1)%72%s Co—— < = S — Fy, F.
1(d+1) d2+ a0 mln{ 1, Fo}




Right scaling

We choose d := [, and let us take for the sake of simplicity R = 2ly/n = %ro

Since we will choose ! > 4ry (and therefore [ — 2r1 > L) the first will be fulfilled if

RI™ > —27 1 log(l — pg ). Employing 21 = f’ we arrive at
h 22nnn/2 1
— > A =————log(1—
qn 1 7 Aps og(l —pm)

The second will surely be fulfilled if (with assuming just ¢ < %)

n (5)"

s (3)°

N

Fl q" > Ay =
F

e

For the third, we must get

22571/ (5)252(2 — g
F1 SA3 ::Té_zs ( ) (2 )

an/2
As for the last, it should hold (4C1 + C2) (2”25 <1 5 min{S — F1, F»>}, or, with
A4 = 4Cl+CQ
7‘0 ’

—_

Aghg® < Zmin{S — F, F»}

[\




Right scaling

The question is if for given A; and S, there exist such ¢ € (0,1) and F1, F2,h > 0.
Let q be free and set

. S
. min{A3z,5 }
F1 := min{ A3, %}, Fo = %q".
Thus, the second and the third inequality are fulfilled. Obviously, for g small
enough
. S
Az, 5
min{S — Fy, Fy} = Fp = 2002} g

So the two remaining inequalities read

h h
— > A, —q* < As
q q

. s
Az, .
with As = %. Hence, we first fix the quotient %, and then choose ¢

sufficiently small. Thus, all the inequalities are fulfilled, and the pinning occurs at
least for FF < F'™*.



Thank you for your attention



