Closure and commutability results for Γ**-limts**

Martin Jesenko

joint work with Bernd Schmidt (Universität Augsburg)

Oberseminar Angewandte Mathematik Freiburg, 15 January 2019

Bernd Schmidt, M. J. Closure and commutability results for Γ-limits and the geometric linearization and homogenization of multiwell energy functionals. SIAM J. Math. Anal. 46 (2014), no. 4, 2525-2553.

Introduction and motivation

Abstract results and extensions

Definition

Let $\{\mathcal{F}_j : M \to [-\infty, \infty]\}_{j \in \mathbb{N}}$ be a sequence of functionals on a metric space (M, d) . Then $\{\mathcal{F}_j\}_{j \in \mathbb{N}}$ Γ-converges at $x \in M$ to some $\mu \in [-\infty, \infty]$ if the following conditions are satisfied:

 \blacktriangleright (liminf-inequality) If $x_j \to x$ in *M*, then

$$
\liminf_{j \to \infty} \mathcal{F}_j(x_j) \ge \mu.
$$

 \triangleright (recovery sequence) There exists a sequence $x_j \to x$ in *M* such that

$$
\lim_{j \to \infty} \mathcal{F}_j(x_j) = \mu.
$$

Denotation:

$$
\mu = \Gamma(d) \text{-} \lim_{j \to \infty} \mathcal{F}_j(x).
$$

We say that $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$ Γ-converges to some functional \mathcal{F}_{∞} , if it Γ-converges to $\mathcal{F}_{\infty}(x)$ at every $x \in M$.

Fundamental properties

Γ-limits are always lower semicontinuous.

Fundamental properties

Γ-limits are always lower semicontinuous.

Theorem

Let $\{\mathcal{F}_j : M \to (-\infty, \infty]\}_{j \in \mathbb{N}}$ *be a sequence of functionals. Suppose*

 \triangleright *there exists a compact set* $K \subset M$ *such that for all* $j \in \mathbb{N}$

$$
\inf_{x \in K} \mathcal{F}_j(x) = \inf_{x \in M} \mathcal{F}_j(x).
$$

$$
\triangleright \Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \mathcal{F}_{\infty}.
$$

Then

$$
\exists \min_{x \in M} \mathcal{F}_{\infty}(x) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_{j}(x).
$$

Moreover, if ${x_j}_{j \in \mathbb{N}}$ *is a precompact sequence such that*

$$
\lim_{j \to \infty} \mathcal{F}_j(x_j) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_j(x),
$$

then every limit of a subsequence of $\{x_j\}_{j\in\mathbb{N}}$ *is a minimum point for* \mathcal{F}_{∞} *.*

Fundamental properties

Γ-limits are always lower semicontinuous.

Theorem

Let $\{\mathcal{F}_j : M \to (-\infty, \infty]\}_{j \in \mathbb{N}}$ *be a sequence of functionals. Suppose*

 \triangleright *there exists a compact set* $K ⊂ M$ *such that for all* $j ∈ N$

$$
\inf_{x \in K} \mathcal{F}_j(x) = \inf_{x \in M} \mathcal{F}_j(x).
$$

$$
\triangleright \Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \mathcal{F}_{\infty}.
$$

Then

$$
\exists \min_{x \in M} \mathcal{F}_{\infty}(x) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_{j}(x).
$$

Moreover, if ${x_j}_{j \in \mathbb{N}}$ *is a precompact sequence such that*

$$
\lim_{j \to \infty} \mathcal{F}_j(x_j) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_j(x),
$$

then every limit of a subsequence of $\{x_j\}_{j\in\mathbb{N}}$ *is a minimum point for* \mathcal{F}_{∞} *.*

Theorem (Urysohn property)

Take $\lambda \in [-\infty, \infty]$ *and* $x \in M$ *. Then*

$$
\lambda = \Gamma(d)\text{-}\lim_{j\to\infty}\mathcal{F}_j(x) \iff \forall \{j_k\}_{k\in\mathbb{N}}\subset\mathbb{N} ~\exists \{k_l\}_{l\in\mathbb{N}}\subset\mathbb{N} : \lambda = \Gamma(d)\text{-}\lim_{l\to\infty}\mathcal{F}_{j_{k_l}}(x)
$$

 \blacktriangleright On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.

- \triangleright On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$
\Gamma(d) \text{-} \lim_{j \to \infty} \mathcal{F}_j = \mathop{\rm lsc} \mathcal{F}
$$

where lsc stands for lower semicontinuous envelope (in the metric *d*).

- ^I On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \mathop{\rm lsc} \mathcal{F}
$$

where lsc stands for lower semicontinuous envelope (in the metric *d*).

► For a non-increasing sequence $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$, it holds

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \text{lsc}\left(\lim_{j \to \infty} \mathcal{F}_j\right) = \text{lsc}\left(\inf_{j \in \mathbb{N}} \mathcal{F}_j\right).
$$

- ^I On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \mathop{\rm lsc} \mathcal{F}
$$

where lsc stands for lower semicontinuous envelope (in the metric *d*).

► For a non-increasing sequence $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$, it holds

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \text{lsc}\left(\lim_{j \to \infty} \mathcal{F}_j\right) = \text{lsc}\left(\inf_{j \in \mathbb{N}} \mathcal{F}_j\right).
$$

If $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$ is non-decreasing, then

$$
\Gamma(d)\text{-}\lim_{j\to\infty}\mathcal{F}_j=\lim_{j\to\infty}\bigg(\mathop\mathrm{lsc}\nolimits\mathcal{F}_j\bigg)=\sup_{j\in\mathbb{N}}\bigg(\mathop\mathrm{lsc}\nolimits\mathcal{F}_j\bigg).
$$

- ^I On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \mathop{\rm lsc} \mathcal{F}
$$

where lsc stands for lower semicontinuous envelope (in the metric *d*).

► For a non-increasing sequence $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$, it holds

$$
\Gamma(d) \cdot \lim_{j \to \infty} \mathcal{F}_j = \text{lsc}\left(\lim_{j \to \infty} \mathcal{F}_j\right) = \text{lsc}\left(\inf_{j \in \mathbb{N}} \mathcal{F}_j\right).
$$

If $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$ is non-decreasing, then

$$
\Gamma(d)\text{-}\lim_{j\to\infty}\mathcal{F}_j=\lim_{j\to\infty}\bigg(\mathop\mathrm{lsc}\nolimits\mathcal{F}_j\bigg)=\sup_{j\in\mathbb{N}}\bigg(\mathop\mathrm{lsc}\nolimits\mathcal{F}_j\bigg).
$$

 \blacktriangleright { \mathcal{F}_j }_{*j*∈N} Γ-converges if and only if {lsc \mathcal{F}_j }_{*j*∈N} Γ-converges (and Γ-limits then coincide).

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with *W* being the stored-energy function. Let us suppose:

- \blacktriangleright *W* is frame-indifferent with $W(x, I) = 0$ and
- $W(x, X) \geq C \text{ dist}^2(X, SO(n)).$

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with *W* being the stored-energy function. Let us suppose:

- \blacktriangleright *W* is frame-indifferent with $W(x, I) = 0$ and
- $W(x, X) \geq C \text{ dist}^2(X, SO(n)).$

If the displacements are small, i.e. $v(x) = x + \delta u(x)$, then

$$
\frac{1}{\delta^2}W(x,I+\delta Y)\approx \frac{1}{2}\partial_Y^2 W(x,I)[Y_{\mathrm{sym}},Y_{\mathrm{sym}}].
$$

The forth-order tensor $\mathbf{A}(x) := \partial_Y^2 W(x, I)$ is called the *elasticity tensor* (at *x*).

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with *W* being the stored-energy function. Let us suppose:

- \blacktriangleright *W* is frame-indifferent with $W(x, I) = 0$ and
- $W(x, X) \geq C \text{ dist}^2(X, SO(n)).$

If the displacements are small, i.e. $v(x) = x + \delta u(x)$, then

$$
\frac{1}{\delta^2} W(x,I+\delta Y) \approx \frac{1}{2} \partial_Y^2 W(x,I) [Y_{\text{sym}},Y_{\text{sym}}].
$$

The forth-order tensor $\mathbf{A}(x) := \partial_Y^2 W(x, I)$ is called the *elasticity tensor* (at *x*). The corresponding energy given by the integral functional (with $\mathfrak{E}u := (\nabla u)_{\text{sym}}$)

$$
\mathcal{E}^{(0)}(u) = \begin{cases} \frac{1}{2} \int_{\Omega} \mathbf{A}(x) [\mathfrak{E}u(x), \mathfrak{E}u(x)] dx, & u \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else on } L^2(\Omega; \mathbb{R}^n), \end{cases}
$$

is a good approximation of the original energy

$$
\mathcal{E}^{(\delta)}(u) := \begin{cases} \frac{1}{\delta^2} \int_{\Omega} W(x, I + \delta \nabla u(x)) dx, & u \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else on } L^2(\Omega; \mathbb{R}^n), \end{cases}
$$

since

$$
\Gamma(L^2) \text{-} \lim_{\delta \to 0} \mathcal{E}^{(\delta)} = \mathcal{E}^{(0)}.
$$

Dal Maso, Negri, Percivale (2002)

Homogenization (and relaxation)

Homogenization (and relaxation)

Suppose $W:\mathbb{R}^n\times\mathbb{R}^{m\times n}\to\mathbb{R}$

- is \mathbb{I}^n -periodic in the first variable (with $\mathbb{I} := (0,1)$),
- $\blacktriangleright \alpha |X|^p \leq W(x, X) \leq \beta (|X|^p + 1).$

Under these conditions the family of functionals $\mathcal{E}_{\varepsilon}$, $\varepsilon > 0$, given by

$$
\mathcal{E}_{\varepsilon}(y) := \begin{cases} \int_{\Omega} W(\frac{x}{\varepsilon}, \nabla y(x)) dx, & y \in W^{1, p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m), \end{cases}
$$

Homogenization (and relaxation)

Suppose $W:\mathbb{R}^n\times\mathbb{R}^{m\times n}\to\mathbb{R}$

- is \mathbb{I}^n -periodic in the first variable (with $\mathbb{I} := (0,1)$),
- $\blacktriangleright \alpha |X|^p \leq W(x, X) \leq \beta (|X|^p + 1).$

Under these conditions the family of functionals $\mathcal{E}_{\varepsilon}$, $\varepsilon > 0$, given by

$$
\mathcal{E}_{\varepsilon}(y) := \begin{cases} \int_{\Omega} W(\frac{x}{\varepsilon}, \nabla y(x)) dx, & y \in W^{1, p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m), \end{cases}
$$

Γ(*Lp*)- converges to

$$
\mathcal{E}_{\text{hom}}(y) = \begin{cases} \int_{\Omega} W_{\text{hom}}(\nabla y(x)) dx, & y \in W^{1,p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m). \end{cases}
$$

The homogenized stored-energy function is given by

$$
W_{\text{hom}}(X) = \inf_{k \in \mathbb{N}} \inf \left\{ \frac{1}{k^n} \int_{k\mathbb{I}^n} W(x, X + \nabla \varphi(x)) \, dx : \varphi \in W_0^{1,p}(k\mathbb{I}^n; \mathbb{R}^m) \right\}.
$$

Braides (1985), Müller (1987) 7 / 29

If may have a material with fine periodic structure and small displacements. In this case:

$$
\frac{1}{\delta^2} \int_{\Omega} W\left(\frac{x}{\varepsilon}, I + \delta \nabla u(x)\right) dx \longrightarrow \int_{\Omega} \mathbf{A}\left(\frac{x}{\varepsilon}\right) \left[\mathfrak{E} u(x), \mathfrak{E} u(x)\right] dx
$$
\n
$$
\Gamma
$$
\n
$$
\frac{1}{\delta^2} \int_{\Omega} W_{\text{hom}}\left(I + \delta \nabla u(x)\right) dx
$$

- \blacktriangleright linearization \checkmark
- \blacktriangleright homogenization \checkmark

If may have a material with fine periodic structure and small displacements. In this case:

$$
\frac{1}{\delta^2} \int_{\Omega} W\left(\frac{x}{\varepsilon}, I + \delta \nabla u(x)\right) dx \xrightarrow{\Gamma} \int_{\Omega} \mathbf{A}\left(\frac{x}{\varepsilon}\right) \left[\mathfrak{E} u(x), \mathfrak{E} u(x)\right] dx
$$
\n
$$
\Gamma
$$
\n
$$
\frac{1}{\delta^2} \int_{\Omega} W_{\text{hom}}\left(I + \delta \nabla u(x)\right) dx \xrightarrow{\Gamma} \int_{\Omega} \mathbf{A}_{\text{hom}}\left[\mathfrak{E} u(x), \mathfrak{E} u(x)\right] dx
$$

- \blacktriangleright linearization \checkmark
- \blacktriangleright homogenization \checkmark
- \triangleright commutability: Müller, Neukamm (2011)

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \left[\int SO(n)(I + \delta S) \right]$ for some finite set of positive matrices $\Sigma \subset \mathbb{R}_{sym}^{n \times n}$. *S*∈Σ

Suppose $W_{\delta}: \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

- \blacktriangleright Carathéodory, frame indifferent,
- $W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$
- $W_{\delta}(x, X) \geq \mathfrak{C} \text{ dist}^{2}(X, \tilde{\Sigma}_{\delta}).$

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \left[\int SO(n)(I + \delta S) \right]$ for some finite set of positive matrices $\Sigma \subset \mathbb{R}_{sym}^{n \times n}$. *S*∈Σ

Suppose $W_{\delta}: \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

- \blacktriangleright Carathéodory, frame indifferent,
- $W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$ $W_{\delta}(x, X) \geq \mathfrak{C} \text{ dist}^{2}(X, \tilde{\Sigma}_{\delta}).$

Let

$$
V_{\delta}: \Omega \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}, \quad V_{\delta}(x, Y) := \frac{1}{\delta^2} W_{\delta}(x, I + \delta Y).
$$

If $V_{\delta} \to V$ uniformly in *x* and locally uniformly *Y*, and $V(x, Y) \leq \mathfrak{U}(|Y|^2 + 1)$, then

$$
\frac{1}{\delta^2} \int_{\Omega} W_{\delta}\Big(x, I + \delta \nabla u(x)\Big) dx \quad \stackrel{\Gamma}{\longrightarrow} \quad \int_{\Omega} V^{\text{qcls}}\Big(x, \mathfrak{E} u(x)\Big) dx
$$

with

$$
V^{\text{qcls}}(x,Y) = \inf_{\varphi \in C_c^{\infty}(\mathbb{I}^n;\mathbb{R}^n)} \int_{\mathbb{I}^n} V(x,Y + \mathfrak{E}\varphi(y)) dy.
$$

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \left[\int SO(n)(I + \delta S) \right]$ for some finite set of positive matrices $\Sigma \subset \mathbb{R}_{sym}^{n \times n}$. *S*∈Σ

Suppose $W_{\delta}: \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

- \blacktriangleright Carathéodory, frame indifferent,
- $W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$ $W_{\delta}(x, X) \geq \mathfrak{C} \text{ dist}^{2}(X, \tilde{\Sigma}_{\delta}).$

Let

$$
V_{\delta}: \Omega \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}, \quad V_{\delta}(x, Y) := \frac{1}{\delta^2} W_{\delta}(x, I + \delta Y).
$$

If $V_{\delta} \to V$ uniformly in *x* and locally uniformly *Y*, and $V(x, Y) \leq \mathfrak{U}(|Y|^2 + 1)$, then

$$
\frac{1}{\delta^2} \int_{\Omega} W_{\delta}\Big(x, I + \delta \nabla u(x)\Big) dx \quad \stackrel{\Gamma}{\longrightarrow} \quad \int_{\Omega} V^{\text{qcls}}\Big(x, \mathfrak{E} u(x)\Big) dx
$$

with

$$
V^{\text{qcls}}(x,Y) = \inf_{\varphi \in C_c^{\infty}(\mathbb{I}^n; \mathbb{R}^n)} \int_{\mathbb{I}^n} V(x, Y + \mathfrak{E}\varphi(y)) dy.
$$

Our starting point: In case we have a fine periodic structure, do we also get a commuting diagram?

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

 \blacktriangleright Does the family of limits also Γ-converge,

Commutability of Γ**-limits**

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

- \blacktriangleright Does the family of limits also Γ-converge,
- \blacktriangleright and does the order matter?

Commutability of Γ**-limits**

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

- \blacktriangleright Does the family of limits also Γ-converge,
- \blacktriangleright and does the order matter?
- \blacktriangleright What about simultaneous limits?

F

0

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

- \blacktriangleright Does the family of limits also Γ-converge,
- \blacktriangleright and does the order matter?
- \triangleright What about simultaneous limits?

We have some sequence of Γ-converging families of functionals and another family.

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

- ^I Does the family of limits also Γ-converge,
- and does the order matter?
- \triangleright What about simultaneous limits?

We have some sequence of Γ -converging families of functionals and another family. What is the right notion of "convergence",

We have some doubly indexed family of functionals. For one index fixed they Γ-converge.

- ^I Does the family of limits also Γ-converge,
- and does the order matter?
- \blacktriangleright What about simultaneous limits?

We have some sequence of Γ -converging families of functionals and another family. What is the right notion of "convergence", so that the latter also Γ-converges?

Basic framework

Our functionals will be of form

$$
\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}
$$

with Ω open bounded in \mathbb{R}^n and $1 < p < \infty$.

Basic framework

Our functionals will be of form

$$
\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}
$$

with Ω open bounded in \mathbb{R}^n and $1 < p < \infty$.

Definition

► A family $f_{\varepsilon}^{(j)}$: $\Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ fulfils a standard *p*-growth condition if there are $\alpha, \beta > 0$ independent of *j* and ε such that

$$
\alpha |X|^p - \beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta (|X|^p + 1)
$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$.

Basic framework

Our functionals will be of form

$$
\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}
$$

with Ω open bounded in \mathbb{R}^n and $1 < p < \infty$.

Definition

► A family $f_{\varepsilon}^{(j)}$: $\Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ fulfils a standard *p*-growth condition if there are $\alpha, \beta > 0$ independent of *j* and ε such that

$$
\alpha |X|^p - \beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta (|X|^p + 1)
$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$.

 \blacktriangleright Families

$$
\{f_{\varepsilon}^{(j)}\}_{{\varepsilon}>0}\}_{{j\in\mathbb{N}}}\quad\text{and}\quad\{f_{\varepsilon}^{(\infty)}\}_{{\varepsilon}>0}
$$

are equivalent on $U \subset \Omega$ open, if

$$
\lim_{j \to \infty} \limsup_{\varepsilon \to 0} \int_{U} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| dx = 0
$$

for every $R \geq 0$.

Theorem (Γ-closure on a single domain)

Suppose that the family of Borel functions

$$
f_{\varepsilon}^{(j)}:\Omega\times\mathbb{R}^{m\times n}\to\mathbb{R},\ j\in\mathbb{N}\cup\{\infty\},\ \varepsilon>0,
$$

uniformly fulfils a standard p-growth condition.

Theorem (Γ-closure on a single domain)

Suppose that the family of Borel functions

$$
f_{\varepsilon}^{(j)}:\Omega\times\mathbb{R}^{m\times n}\to\mathbb{R},\ j\in\mathbb{N}\cup\{\infty\},\ \varepsilon>0,
$$

uniformly fulfils a standard p-growth condition.

If $g_{\varepsilon}^{(j)} \xrightarrow{\approx \text{ on } \Omega} g_{\varepsilon}^{(\infty)}$ $\mathfrak{F}^{(j)}_0$ Γ(*Lp*)

Theorem (Γ-closure on a single domain)

Suppose that the family of Borel functions

$$
f_{\varepsilon}^{(j)}:\Omega\times\mathbb{R}^{m\times n}\to\mathbb{R},\ j\in\mathbb{N}\cup\{\infty\},\ \varepsilon>0,
$$

uniformly fulfils a standard p-growth condition.

Key tool: Kristensen (1994); Fonseca, Müller, Pedregal (1998)

Lemma (Decomposition lemma)

Let $\{u_i\}_{i\in\mathbb{N}}$ *be a bounded sequence in* $W^{1,p}(\Omega;\mathbb{R}^m)$ *. There exists a subsequence* ${u_{i_k}}_{k \in \mathbb{N}}$ *and a sequence* ${v_k}_{k \in \mathbb{N}} \subset W^{1,p}(\Omega;\mathbb{R}^m)$ *such that*

$$
\lim_{k \to \infty} |\{\nabla v_k \neq \nabla u_{i_k}\} \cup \{v_k \neq u_{i_k}\}| = 0
$$

and $\{|\nabla v_k|^p\}_{k\in\mathbb{N}}$ *is equi-integrable.*

Moreover, if $u_i \rightharpoonup u$ *in* $W^{1,p}(\Omega;\mathbb{R}^m)$ *, then the* v_k *can be chosen in such a way that* $v_k = u$ *on* $\partial\Omega$ *and* $v_k \to u$ *in* $W^{1,p}(\Omega; \mathbb{R}^m)$ *.*
Idea for the proof

Idea for the proof

 \blacktriangleright Assume the vertical Γ-convergence.

$$
\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx} \mathcal{F}_{\varepsilon}^{(\infty)} \downarrow \Gamma(L^p) \qquad \downarrow \Gamma(L^p) \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \mathcal{F}_{0}^{(j)} \xrightarrow{\text{pointwise}} \downarrow \qquad \downarrow \mathcal{F}_{0}^{(\infty)} \xrightarrow{\text{res}} \mathcal{F}_{0}^{(\infty)}
$$

- \blacktriangleright Assume the vertical $\Gamma\text{-convergence}.$
- \triangleright For every *u* ∈ *L*^{*p*}(Ω; \mathbb{R}^m)

$$
\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).
$$

$$
\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx} \mathcal{F}_{\varepsilon}^{(\infty)} \downarrow \Gamma(L^p) \qquad \downarrow \Gamma(L^p) \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \mathcal{F}_{0}^{(j)} \xrightarrow{\text{pointwise}} \downarrow \qquad \downarrow \mathcal{F}_{0}^{(\infty)} \xrightarrow{\text{res}} \mathcal{F}_{0}^{(\infty)}
$$

- \blacktriangleright Assume the vertical Γ-convergence.
- \triangleright For every *u* ∈ $L^p(\Omega;\mathbb{R}^m)$

$$
\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).
$$

 \triangleright For every *u_j* → *u* in *L^p*(Ω; R^{*m*})

$$
\liminf_{j \to \infty} \mathcal{F}_0^{(j)}(u_j) \ge \mathcal{F}_0^{(\infty)}(u)
$$

$$
\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx} \mathcal{F}_{\varepsilon}^{(\infty)} \n\downarrow_{\Gamma(L^p)} \qquad \qquad \downarrow_{\Gamma(L^p)} \n\mathcal{F}_{0}^{(j)} \xrightarrow[\Gamma(L^p)] \qquad \qquad \downarrow_{\Gamma(L^p)} \n\mathcal{F}_{0}^{(j)} \xrightarrow[\Gamma(L^p)] \qquad \qquad \mathcal{F}_{0}^{(\infty)}
$$

- \blacktriangleright Assume the vertical Γ-convergence.
- \triangleright For every *u* ∈ *L*^{*p*}(Ω; \mathbb{R}^m)

$$
\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).
$$

For every
$$
u_j \to u
$$
 in $L^p(\Omega; \mathbb{R}^m)$

$$
\liminf_{j \to \infty} \mathcal{F}_0^{(j)}(u_j) \ge \mathcal{F}_0^{(\infty)}(u)
$$

 \blacktriangleright Justification of our assumption by Urysohn property and pointwise convergence below.

If we assume equivalence and Γ-convergence on every open subset, then we get more information on density.

If we assume equivalence and Γ-convergence on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ-limit is deterministic).

If we assume equivalence and Γ-convergence on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ-limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

If we assume equivalence and Γ-convergence on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ-limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

 \blacktriangleright boundary values \checkmark

riable domain $\sqrt{ }$

If we assume equivalence and Γ-convergence on every open subset, then we get more information on density.

ightharpoontriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ-limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

- \blacktriangleright boundary values \checkmark
- \blacktriangleright upper bound \checkmark

It may be relaxed for $j < \infty$.

Definition

We say that the family of integral functionals

$$
\mathcal{F}^{(j)}_{\varepsilon}:~j\in\mathbb{N}\cup\{\infty\},~\varepsilon>0
$$

with densities $f_{\epsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

Definition

We say that the family of integral functionals

$$
\mathcal{F}^{(j)}_{\varepsilon}:~j\in\mathbb{N}\cup\{\infty\},~\varepsilon>0
$$

with densities $f_{\epsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

 \triangleright there is $\beta > 0$ such that

$$
-\beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta(|X|^p + 1)
$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$,

Definition

We say that the family of integral functionals

$$
\mathcal{F}^{(j)}_{\varepsilon}:~j\in\mathbb{N}\cup\{\infty\},~\varepsilon>0
$$

with densities $f_{\epsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

 \triangleright there is $\beta > 0$ such that

$$
-\beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta(|X|^p + 1)
$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$,

If there are $\alpha_U > 0$, $\gamma_U \in \mathbb{R}$ such that

$$
\mathcal{F}_{\varepsilon}^{(j)}(u,U) \ge \alpha_U \int_U |\nabla u(x)|^p dx - \gamma_U \int_U |u(x)|^p dx
$$

for all $u \in W^{1,p}(U;\mathbb{R}^m)$.

Theorem

Suppose that the family of Borel functions

$$
f_{\varepsilon}^{(j)}:\Omega\times\mathbb{R}^{m\times n}\to\mathbb{R},\ j\in\mathbb{N}\cup\{\infty\},\ \varepsilon>0,
$$

Proposition

Suppose that the family $\{\mathcal{F}_{\varepsilon}\}_{{\varepsilon}>0}$ *with densities* f_{ε} *is of uniform p-Gårding type on* Ω *. Define for some null sequence* $\lambda_k \searrow 0$

$$
f_{\varepsilon}^{(k)}(x,X) := f_{\varepsilon}(x,X) + \lambda_k |X|^p
$$

and denote by $\mathcal{F}_{\varepsilon}^{(k)}$ the corresponding integral functionals.

Consequences

 $\mathcal{F}_{\varepsilon} \longrightarrow {\mathcal{F}_{\varepsilon}}$ $\frac{4}{90}$ ≈ $\Gamma \setminus \qquad \quad \ / \ \ \Gamma$

• Perturbation:

• Perturbation:

Homogenization closure by Braides (1986)

• Perturbation:

Homogenization closure by Braides (1986)

• Perturbation:

Homogenization closure by Braides (1986)

linearization in the one-well case by Dal Maso, Negri, Percivale geometric linearization in the multiple-well case by Schmidt

Theorem (Commutability)

Suppose that the family of functionals

$$
\mathcal{F}_{\varepsilon}^{(j)}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,
$$

 $with$ *densities* $f_{\varepsilon}^{(j)}$ *is of uniform p-Gårding type on* Ω *.*

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}_{\varepsilon}^{(j)}$, $j \in \mathbb{N} \cup \{\infty\}, \varepsilon > 0$, $with$ *densities* $f_{\varepsilon}^{(j)}$ *is of uniform p-Gårding type on* Ω *. If* $\mathcal{F}_{\varepsilon}^{(j)}$ \longrightarrow $\mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathfrak{F}^{(j)}_0$ ≈ *(also for ε fixed)* Γ $\forall \varepsilon, R > 0 : \lim_{j \to \infty} \int_{\Omega}$ $\sup_{|X| \leq R} |f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| dx = 0$

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}_{\varepsilon}^{(j)}$, $j \in \mathbb{N} \cup \{\infty\}, \varepsilon > 0$, $with$ *densities* $f_{\varepsilon}^{(j)}$ *is of uniform p-Gårding type on* Ω *. If* $\mathcal{F}_{\varepsilon}^{(j)}$ \longrightarrow $\mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathfrak{F}^{(j)}_0$ $\frac{d^2}{dz^2}$ *(also for ε fixed*)
 $g^{(\infty)}$
 $g^{(j)} = - - - - - - - \rightarrow \text{lsc } g^{(\infty)}$ Γ $\forall \varepsilon, R > 0 : \lim_{j \to \infty} \int_{\Omega}$ $\sup_{|X| \leq R} |f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| dx = 0$ *then* F (*j*) $\mathbf{0}$ $\overline{\Gamma}$ - - - - > $\mathfrak{F}_0^{(\infty)}$ Γ Γ *pointwise*

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}_{\varepsilon}^{(j)}$, $j \in \mathbb{N} \cup \{\infty\}, \varepsilon > 0$, $with$ *densities* $f_{\varepsilon}^{(j)}$ *is of uniform p-Gårding type on* Ω *. If* $\mathcal{F}_{\varepsilon}^{(j)}$ \longrightarrow $\mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathfrak{F}^{(j)}_0$ $\frac{d^2}{dz^2}$ *(also for ε fixed*)
 $g^{(\infty)}$
 $g^{(j)} = - - - - - - - \rightarrow \text{lsc } g^{(\infty)}$ Γ $\forall \varepsilon, R > 0 : \lim_{j \to \infty} \int_{\Omega}$ $\sup_{|X| \leq R} |f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| dx = 0$ *then* F (*j*) $\mathbf{0}$ $\overline{\Gamma}$ - - - - > $\mathfrak{F}_0^{(\infty)}$ Γ Γ *pointwise*

- \blacktriangleright Müller, Neukamm
- \triangleright our setting

Theorem

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. Suppose that the family of functionals $\mathfrak{I}_{\varepsilon}^{(j)}$, $j \in \mathbb{N} \cup \{\infty\},\ \varepsilon > 0$, with densities $f_{\varepsilon}^{(j)} : \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ is of uniform p-Gårding t *ype on* Ω *. Let us have* $\{j_k\}_{k\in\mathbb{N}}\subset\mathbb{N}$ *and* $\{\varepsilon_k\}_{k\in\mathbb{N}}$ *with* $\varepsilon_k\searrow 0$ *. Assume that*

$$
\sum_{\varepsilon \to 0} \Gamma(L^p) \cdot \lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}^{(\infty)} = \mathcal{F}_{0}^{(\infty)},
$$

$$
\sum_{k \to \infty} \int_{\Omega} \sup_{|X| \le R} |f_{\varepsilon_k}^{(j_k)}(x, X) - f_{\varepsilon_k}^{(\infty)}(x, X)| dx = 0 \quad \text{for every } R > 0.
$$

Then

$$
\Gamma(L^p) \cdot \lim_{k \to \infty} \mathcal{F}_{\varepsilon_k}^{(j_k)} = \mathcal{F}_0^{(\infty)}.
$$

E.g., this condition is surely satisfied if

$$
\forall R>0:\lim_{j\rightarrow\infty}\sup_{\varepsilon>0}\int_{\Omega}|X|\leq R}|f_{\varepsilon}^{(j)}(x,X)-f_{\varepsilon}^{(\infty)}(x,X)|\ dx=0
$$

p = 1 **case**

Now suppose $p = 1$. Then Γ -limits below would be finite on $BV(\Omega;\mathbb{R}^m)$.

The counterexample is based on Bouchitte, Dal Maso (1993). It shows that the consequence regarding perturbation cannot hold:

Counterexample for $p = 1$ **case**

Let us consider the scalar case $m = 1$ with $\Omega := I = (-1, 1)$. Take

 $f: \mathbb{R} \to \mathbb{R}, \quad f(\xi) := \max\{|\xi|, 2|\xi| - 1\}.$

Counterexample for $p = 1$ **case**

Let us consider the scalar case $m = 1$ with $\Omega := I = (-1, 1)$. Take

$$
f:\mathbb{R}\to\mathbb{R},\quad f(\xi):=\max\{|\xi|,2|\xi|-1\}.
$$

It is

- \blacktriangleright convex,
- \blacktriangleright not 1-homogenous,
- \triangleright satisfies the linear growth condition $|\xi|$ ≤ *f*(*ξ*) ≤ 2|*ξ*|,
- **►** its recession function is $\underline{f}(\xi) = \lim_{t \to \infty}$ $\frac{f(t\xi)}{t} = 2|\xi|$.

Counterexample for *p* = 1 **case**

Let us consider the scalar case $m = 1$ with $\Omega := I = (-1, 1)$. Take

$$
f:\mathbb{R}\to\mathbb{R},\quad f(\xi):=\max\{|\xi|,2|\xi|-1\}.
$$

It is

- \blacktriangleright convex,
- \blacktriangleright not 1-homogenous,
- \triangleright satisfies the linear growth condition $|\xi|$ ≤ *f*(*ξ*) ≤ 2|*ξ*|,
- **►** its recession function is $\underline{f}(\xi) = \lim_{t \to \infty}$ $\frac{f(t\xi)}{t} = 2|\xi|$.

The constant sequence of functionals on $L^1(I)$ given by \mathcal{F} ,

$$
\mathcal{F}(u) := \begin{cases} \n\int_{-1}^{1} f(u'(x)) dx, & u \in W^{1,1}(I), \\ \n\infty, & \text{else on } L^{1}(I), \n\end{cases}
$$

Γ-converges to its relaxation \mathcal{F}_0 that is finite exactly on $BV(I)$ and there takes the values

$$
\mathcal{F}_0(u) = \int_{-1}^1 f(u'(x)) dx + \int_{-1}^1 \underline{f}\left(\frac{dD^s u}{d|D^s u|}(x)\right) d|D^s u|(x)
$$

=
$$
\int_{-1}^1 f(u'(x)) dx + 2|D^s u|(I),
$$

Counterexample for $p = 1$ **case** (2)

Take

$$
g_{\varepsilon}(x,\xi):=f\left(\tfrac{\xi}{a_{\varepsilon}(x)}\right)a_{\varepsilon}(x)
$$

where

lim sup *ε*→0

 \int_1^1 −1

$$
a_{\varepsilon}(x) := \begin{cases} 1, & |x| \ge \varepsilon, \\ \frac{1}{2\varepsilon}, & |x| < \varepsilon. \end{cases}
$$

The (one-index) family ${g_{\varepsilon}}_{\varepsilon>0}$ is equivalent to the constant family given by *f*:

$$
E = f\left(\frac{\xi}{a_{\varepsilon}(x)}\right) a_{\varepsilon}(x)
$$
\n
$$
= \left\{ \begin{array}{ll} 1, & |x| \ge \varepsilon, \\ \frac{1}{2\varepsilon}, & |x| < \varepsilon. \end{array} \right.
$$
\n
$$
= \left\{ \begin{array}{ll} 1, & |x| \ge \varepsilon, \\ \frac{1}{2\varepsilon}, & |x| < \varepsilon. \end{array} \right.
$$
\n
$$
= \sup_{|\xi| \le R} |g_{\varepsilon}(x,\xi) - f(\xi)| dx = \limsup_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \sup_{|\xi| \le R} \left| \frac{1}{2\varepsilon} f(2\varepsilon\xi) - f(\xi) \right| dx
$$
\n
$$
\le \limsup_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \sup_{|\xi| \le R} 4|\xi| dx
$$
\n
$$
= \limsup_{\varepsilon \to 0} 8R\varepsilon
$$

$$
= 0 \qquad \qquad 25/29
$$

Counterexample for $p = 1$ **case** (3)

Let us denote $\lambda_{\varepsilon} := a_{\varepsilon} \mathcal{L}^1 \in M(I)$. Since for $u \in W^{1,1}(I)$

$$
Du = u'\mathcal{L}^1 = \frac{u'}{a_{\varepsilon}}\lambda_{\varepsilon}
$$

the corresponding functionals $\mathcal{G}_{\varepsilon}$ have on $W^{1,1}(I)$ the following representation

$$
\mathcal{G}_{\varepsilon}(u) = \int_{-1}^{1} g_{\varepsilon}(x, u'(x)) dx = \int_{-1}^{1} f\left(\frac{dDu}{d\lambda_{\varepsilon}}(x)\right) d\lambda_{\varepsilon}(x).
$$

Since

$$
\lambda_{\varepsilon} \stackrel{*}{\rightharpoonup} \lambda := \delta_0 + \mathcal{L}^1 \quad \text{in } M(I)
$$

Counterexample for $p = 1$ **case** (3)

Let us denote $\lambda_{\varepsilon} := a_{\varepsilon} \mathcal{L}^1 \in M(I)$. Since for $u \in W^{1,1}(I)$

$$
Du = u'\mathcal{L}^1 = \frac{u'}{a_{\varepsilon}}\lambda_{\varepsilon}
$$

the corresponding functionals $\mathcal{G}_{\varepsilon}$ have on $W^{1,1}(I)$ the following representation

$$
\mathcal{G}_{\varepsilon}(u) = \int_{-1}^{1} g_{\varepsilon}(x, u'(x)) \ dx = \int_{-1}^{1} f\left(\frac{dDu}{d\lambda_{\varepsilon}}(x)\right) d\lambda_{\varepsilon}(x).
$$

Since

$$
\lambda_\varepsilon \stackrel{*}{\rightharpoonup} \lambda := \delta_0 + \mathcal{L}^1 \quad \text{in } M(I)
$$

it follows by the results from Buttazzo, Freddi (1991) that G*^ε* Γ(*L*¹)-converges to $9₀$ given by

$$
\mathcal{G}_0(u) = \int_{-1}^1 f\left(\frac{dD_\lambda^a u}{d\lambda}(x)\right) d\lambda(x) + \int_{-1}^1 \underline{f}\left(\frac{dD_\lambda^s u}{d|D_\lambda^s u|}(x)\right) d|D_\lambda^s u|(x)
$$

if u ∈ $BV(I)$ and ∞ otherwise, where

$$
Du=D^a_\lambda u+D^s_\lambda u,\quad D^a_\lambda u\ll \lambda,\quad D^a_\lambda u\perp\lambda.
$$

Therefore, for $u \in BV(I)$

$$
\mathcal{F}_0(u) = \int_{-1}^1 f(u'(x)) dx + 2||D^s u||,
$$

\n
$$
\mathcal{G}_0(u) = \int_{-1}^1 f\left(\frac{dD^s_{\lambda} u}{d\lambda}(x)\right) d\lambda(x) + 2||D^s_{\lambda} u||.
$$
Therefore, for $u \in BV(I)$

$$
\mathcal{F}_0(u) = \int_{-1}^1 f(u'(x)) \, dx + 2||D^s u||,
$$

\n
$$
\mathcal{G}_0(u) = \int_{-1}^1 f\left(\frac{dD^a_\lambda u}{d\lambda}(x)\right) d\lambda(x) + 2||D^s_\lambda u||.
$$

Choose $u := \chi_{(0,1)} \in SBV(I)$. Then $Du = \delta_0$ and

$$
D^a u + D^s u = 0 \cdot \mathcal{L}^1 + \delta_0,
$$

$$
D^a_\lambda u + D^s_\lambda u = \chi_{\{0\}} \cdot \lambda + 0.
$$

Hence

$$
\mathcal{F}_0(\chi_{(0,1)}) = 2
$$
 and $\mathcal{G}_0(\chi_{(0,1)}) = 1$.

Problems: families whose difference grows linearly for large *X* at least on some set of *x*.

Additional condition at ∞

Problems: families whose difference grows linearly for large *X* at least on some set of *x*.

Possible solution: to assume for some $\delta \in (0,1)$ and $\gamma > 0$

$$
|f^{(j)}_{\varepsilon}(x,X)-f^{(\infty)}_{\varepsilon}(x,X)|\leq \gamma |X|^{1-\delta}
$$

Problems: families whose difference grows linearly for large *X* at least on some set of *x*.

Possible solution: to assume for some $\delta \in (0,1)$ and $\gamma > 0$

$$
|f^{(j)}_{\varepsilon}(x,X)-f^{(\infty)}_{\varepsilon}(x,X)|\leq \gamma |X|^{1-\delta}
$$

Not sufficient: convergence of recession functions.

Problems: families whose difference grows linearly for large *X* at least on some set of *x*.

Possible solution: to assume for some $\delta \in (0,1)$ and $\gamma > 0$

$$
|f^{(j)}_{\varepsilon}(x,X)-f^{(\infty)}_{\varepsilon}(x,X)|\leq \gamma |X|^{1-\delta}
$$

Not sufficient: convergence of recession functions.

Definition Families $\{\{f_{\varepsilon}^{(j)}\}_{{\varepsilon}>0}\}_{{j\in\mathbb{N}}}$ and $\{f_{\varepsilon}^{(\infty)}\}_{{\varepsilon}>0}$ are equivalent at ∞ on $U\subset\Omega$, if for $r_{\varepsilon}^{(j)}(R) := \text{ess}\sup \sup_{x \in \mathcal{X}} \frac{|f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)|}{|X|}$ *x*∈*U* |*X*|≥*R* |*X*| it holds $\lim_{R \to \infty} \limsup_{j \to \infty} \limsup_{\varepsilon \to 0} r_{\varepsilon}^{(j)}(R) = 0.$

Theorem (Γ-closure on a single domain)

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. Suppose that the family of Borel functions $f_{\varepsilon}^{(j)}$: $\Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ *,* $j \in \mathbb{N}$ *,* $\varepsilon > 0$ *, uniformly fulfils a standard linear growth condition. Assume that*

