Closure and commutability results for Γ -limts

Martin Jesenko

joint work with Bernd Schmidt (Universität Augsburg)

Oberseminar Angewandte Mathematik Freiburg, 15 January 2019

Bernd Schmidt, M. J. Closure and commutability results for Γ -limits and the geometric linearization and homogenization of multiwell energy functionals. SIAM J. Math. Anal. 46 (2014), no. 4, 2525-2553.

Introduction and motivation

Abstract results and extensions

Definition

Let $\{\mathcal{F}_j : M \to [-\infty, \infty]\}_{j \in \mathbb{N}}$ be a sequence of functionals on a metric space (M, d). Then $\{\mathcal{F}_j\}_{j \in \mathbb{N}}$ Γ -converges at $x \in M$ to some $\mu \in [-\infty, \infty]$ if the following conditions are satisfied:

• (liminf-inequality) If $x_j \to x$ in M, then

$$\liminf_{j \to \infty} \mathcal{F}_j(x_j) \ge \mu.$$

• (recovery sequence) There exists a sequence $x_j \to x$ in M such that

$$\lim_{j \to \infty} \mathcal{F}_j(x_j) = \mu.$$

Denotation:

$$\mu = \Gamma(d) - \lim_{j \to \infty} \mathcal{F}_j(x).$$

We say that $\{\mathcal{F}_j\}_{j \in \mathbb{N}} \Gamma$ -converges to some functional \mathcal{F}_{∞} , if it Γ -converges to $\mathcal{F}_{\infty}(x)$ at every $x \in M$.

Fundamental properties

 Γ -limits are always lower semicontinuous.

Fundamental properties

 Γ -limits are always lower semicontinuous.

Theorem

Let $\{ \mathfrak{F}_j: M \to (-\infty,\infty] \}_{j \in \mathbb{N}}$ be a sequence of functionals. Suppose

• there exists a compact set $K \subset M$ such that for all $j \in \mathbb{N}$

$$\inf_{x \in K} \mathcal{F}_j(x) = \inf_{x \in M} \mathcal{F}_j(x).$$

•
$$\Gamma(d)$$
- $\lim_{j \to \infty} \mathcal{F}_j = \mathcal{F}_\infty$.

Then

$$\exists \min_{x \in M} \mathcal{F}_{\infty}(x) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_{j}(x).$$

Moreover, if $\{x_j\}_{j\in\mathbb{N}}$ is a precompact sequence such that

$$\lim_{j \to \infty} \mathcal{F}_j(x_j) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_j(x),$$

then every limit of a subsequence of $\{x_j\}_{j\in\mathbb{N}}$ is a minimum point for \mathfrak{F}_{∞} .

Fundamental properties

 Γ -limits are always lower semicontinuous.

Theorem

Let $\{ \mathfrak{F}_j: M \to (-\infty,\infty] \}_{j \in \mathbb{N}}$ be a sequence of functionals. Suppose

• there exists a compact set $K \subset M$ such that for all $j \in \mathbb{N}$

$$\inf_{x \in K} \mathcal{F}_j(x) = \inf_{x \in M} \mathcal{F}_j(x).$$

•
$$\Gamma(d)$$
- $\lim_{j \to \infty} \mathcal{F}_j = \mathcal{F}_\infty$.

Then

$$\exists \min_{x \in M} \mathcal{F}_{\infty}(x) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_{j}(x).$$

Moreover, if $\{x_j\}_{j\in\mathbb{N}}$ is a precompact sequence such that

$$\lim_{j \to \infty} \mathcal{F}_j(x_j) = \lim_{j \to \infty} \inf_{x \in M} \mathcal{F}_j(x),$$

then every limit of a subsequence of $\{x_j\}_{j\in\mathbb{N}}$ is a minimum point for \mathfrak{F}_{∞} .

Theorem (Urysohn property)

Take $\lambda \in [-\infty, \infty]$ and $x \in M$. Then

$$\lambda = \Gamma(d) - \lim_{j \to \infty} \mathcal{F}_j(x) \iff \forall \{j_k\}_{k \in \mathbb{N}} \subset \mathbb{N} \ \exists \{k_l\}_{l \in \mathbb{N}} \subset \mathbb{N} : \lambda = \Gamma(d) - \lim_{l \to \infty} \mathcal{F}_{j_{k_l}}(x)$$

 \blacktriangleright On a separable metric space every sequence of functionals always contains at least a subsequence that $\Gamma\text{-converges.}$

- On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$\Gamma(d)-\lim_{j\to\infty}\mathcal{F}_j=\operatorname{lsc}\mathcal{F}$$

where lsc stands for lower semicontinuous envelope (in the metric d).

- On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- ▶ If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$\Gamma(d)-\lim_{j\to\infty}\mathcal{F}_j=\mathrm{lsc}\,\mathcal{F}$$

where lsc stands for lower semicontinuous envelope (in the metric d).

▶ For a non-increasing sequence $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$, it holds

$$\Gamma(d)\operatorname{-}\lim_{j\to\infty}\mathfrak{F}_j=\operatorname{lsc}\left(\lim_{j\to\infty}\mathfrak{F}_j\right)=\operatorname{lsc}\left(\inf_{j\in\mathbb{N}}\mathfrak{F}_j\right).$$

- On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- ▶ If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$\Gamma(d)-\lim_{j\to\infty}\mathcal{F}_j=\mathrm{lsc}\,\mathcal{F}$$

where lsc stands for lower semicontinuous envelope (in the metric d).

▶ For a non-increasing sequence $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$, it holds

$$\Gamma(d)$$
- $\lim_{j \to \infty} \mathfrak{F}_j = \operatorname{lsc}\left(\lim_{j \to \infty} \mathfrak{F}_j\right) = \operatorname{lsc}\left(\inf_{j \in \mathbb{N}} \mathfrak{F}_j\right).$

• If $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$ is non-decreasing, then

$$\Gamma(d)\operatorname{-}\lim_{j\to\infty}\mathfrak{F}_j=\lim_{j\to\infty}\bigg(\operatorname{lsc}\mathfrak{F}_j\bigg)=\sup_{j\in\mathbb{N}}\bigg(\operatorname{lsc}\mathfrak{F}_j\bigg).$$

- On a separable metric space every sequence of functionals always contains at least a subsequence that Γ-converges.
- If we have a constant sequence, i.e., $\mathcal{F}_j = \mathcal{F}$ for all $j \in \mathbb{N}$, then

$$\Gamma(d)-\lim_{j\to\infty}\mathcal{F}_j=\operatorname{lsc}\mathcal{F}$$

where lsc stands for lower semicontinuous envelope (in the metric d).

▶ For a non-increasing sequence $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$, it holds

$$\Gamma(d)$$
- $\lim_{j \to \infty} \mathfrak{F}_j = \operatorname{lsc}\left(\lim_{j \to \infty} \mathfrak{F}_j\right) = \operatorname{lsc}\left(\inf_{j \in \mathbb{N}} \mathfrak{F}_j\right).$

• If $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$ is non-decreasing, then

$$\Gamma(d) - \lim_{j \to \infty} \mathfrak{F}_j = \lim_{j \to \infty} \left(\operatorname{lsc} \mathfrak{F}_j \right) = \sup_{j \in \mathbb{N}} \left(\operatorname{lsc} \mathfrak{F}_j \right).$$

▶ $\{\mathcal{F}_j\}_{j\in\mathbb{N}}$ Γ -converges if and only if $\{\operatorname{lsc} \mathcal{F}_j\}_{j\in\mathbb{N}}$ Γ -converges (and Γ -limits then coincide).

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with W being the stored-energy function. Let us suppose:

• W is frame-indifferent with W(x, I) = 0 and

•
$$W(x, X) \ge C \operatorname{dist}^2 (X, SO(n)).$$

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with W being the stored-energy function. Let us suppose:

• W is frame-indifferent with W(x, I) = 0 and

•
$$W(x, X) \ge C \operatorname{dist}^2 (X, SO(n)).$$

If the displacements are small, i.e. $v(x) = x + \delta u(x)$, then

$$\frac{1}{\delta^2} W(x,I+\delta Y) \approx \frac{1}{2} \partial_Y^2 W(x,I) [Y_{\rm sym},Y_{\rm sym}].$$

The forth-order tensor $\mathbf{A}(x) := \partial_Y^2 W(x, I)$ is called the *elasticity tensor* (at x).

Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed upon as minimizers of $\int_{\Omega} W(x, \nabla v(x)) dx$ with W being the stored-energy function. Let us suppose:

• W is frame-indifferent with W(x, I) = 0 and

•
$$W(x,X) \ge C \operatorname{dist}^2 (X, SO(n)).$$

If the displacements are small, i.e. $v(x) = x + \delta u(x)$, then

$$\frac{1}{\delta^2} W(x,I+\delta Y) \approx \frac{1}{2} \partial_Y^2 W(x,I) [Y_{\rm sym},Y_{\rm sym}].$$

The forth-order tensor $\mathbf{A}(x) := \partial_Y^2 W(x, I)$ is called the *elasticity tensor* (at x). The corresponding energy given by the integral functional (with $\mathfrak{E}u := (\nabla u)_{\text{sym}}$)

$$\mathcal{E}^{(0)}(u) = \begin{cases} \frac{1}{2} \int_{\Omega} \mathbf{A}(x) [\mathfrak{E}u(x), \mathfrak{E}u(x)] \, dx, & u \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^n) \\ \infty, & \text{else on } L^2(\Omega; \mathbb{R}^n), \end{cases}$$

is a good approximation of the original energy

$$\mathcal{E}^{(\delta)}(u) := \begin{cases} \frac{1}{\delta^2} \int_{\Omega} W(x, I + \delta \nabla u(x)) \, dx, & u \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^n), \\ \infty, & \text{else on } L^2(\Omega; \mathbb{R}^n), \end{cases}$$

since

$$\Gamma(L^2) - \lim_{\delta \to 0} \mathcal{E}^{(\delta)} = \mathcal{E}^{(0)}.$$

Dal Maso, Negri, Percivale (2002)

Homogenization (and relaxation)

Homogenization (and relaxation)

Suppose $W : \mathbb{R}^n \times \mathbb{R}^{m \times n} \to \mathbb{R}$

- is \mathbb{I}^n -periodic in the first variable (with $\mathbb{I} := (0, 1)$),
- $\alpha |X|^p \le W(x, X) \le \beta (|X|^p + 1).$

Under these conditions the family of functionals $\mathcal{E}_{\varepsilon}$, $\varepsilon > 0$, given by

$$\mathcal{E}_{\varepsilon}(y) := \left\{ \begin{array}{cc} \int_{\Omega} W(\frac{x}{\varepsilon}, \nabla y(x)) \ dx, & y \in W^{1,p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m), \end{array} \right.$$

Homogenization (and relaxation)

Suppose $W : \mathbb{R}^n \times \mathbb{R}^{m \times n} \to \mathbb{R}$

- is \mathbb{I}^n -periodic in the first variable (with $\mathbb{I} := (0, 1)$),
- $\alpha |X|^p \le W(x, X) \le \beta (|X|^p + 1).$

Under these conditions the family of functionals $\mathcal{E}_{\varepsilon}$, $\varepsilon > 0$, given by

$$\mathcal{E}_{\varepsilon}(y) := \left\{ \begin{array}{cc} \int_{\Omega} W(\frac{x}{\varepsilon}, \nabla y(x)) \ dx, & y \in W^{1,p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m), \end{array} \right.$$

 $\Gamma(L^p)$ - converges to

$$\mathcal{E}_{\mathrm{hom}}(y) = \begin{cases} \int_{\Omega} W_{\mathrm{hom}}(\nabla y(x)) \ dx, & y \in W^{1,p}(\Omega; \mathbb{R}^m), \\ \infty, & \text{else on } L^p(\Omega; \mathbb{R}^m). \end{cases}$$

The homogenized stored-energy function is given by

$$W_{\text{hom}}(X) = \inf_{k \in \mathbb{N}} \inf \left\{ \frac{1}{k^n} \int_{k\mathbb{I}^n} W(x, X + \nabla \varphi(x)) \ dx : \varphi \in W_0^{1, p}(k\mathbb{I}^n; \mathbb{R}^m) \right\}$$

Braides (1985), Müller (1987)

If may have a material with fine periodic structure and small displacements. In this case:

- \blacktriangleright linearization \checkmark
- \blacktriangleright homogenization \checkmark

If may have a material with fine periodic structure and small displacements. In this case:

- \blacktriangleright linearization \checkmark
- \blacktriangleright homogenization \checkmark
- ▶ commutability: Müller, Neukamm (2011)

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \bigcup_{S \in \Sigma} SO(n)(I + \delta S) \quad \text{for some finite set of positive matrices } \Sigma \subset \mathbb{R}^{n \times n}_{\text{sym}}.$

Suppose $W_{\delta} : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

Carathéodory, frame indifferent,

•
$$W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$$

• $W_{\delta}(x, X) \ge \mathfrak{C} \operatorname{dist}^2(X, \tilde{\Sigma}_{\delta}).$

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \bigcup_{S \in \Sigma} SO(n)(I + \delta S) \quad \text{for some finite set of positive matrices } \Sigma \subset \mathbb{R}^{n \times n}_{\text{sym}}.$

Suppose $W_{\delta} : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

Carathéodory, frame indifferent,

$$W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$$

$$W_{\delta}(x, X) \ge \mathfrak{C} \operatorname{dist}^{2}(X, \tilde{\Sigma}_{\delta}).$$

Let

$$V_{\delta}: \Omega \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}, \quad V_{\delta}(x, Y) := \frac{1}{\delta^2} W_{\delta}(x, I + \delta Y).$$

If $V_{\delta} \to V$ uniformly in x and locally uniformly Y, and $V(x, Y) \leq \mathfrak{U}(|Y|^2 + 1)$, then

$$\frac{1}{\delta^2} \int_{\Omega} W_{\delta} \left(x, I + \delta \nabla u(x) \right) \, dx \quad \stackrel{\Gamma}{\longrightarrow} \quad \int_{\Omega} V^{\text{qcls}} \left(x, \mathfrak{E}u(x) \right) \, dx$$

with

$$V^{\mathrm{qcls}}(x,Y) = \inf_{\varphi \in C^\infty_c(\mathbb{I}^n;\mathbb{R}^n)} \int_{\mathbb{I}^n} V\Big(x,Y + \mathfrak{E}\varphi(y)\Big) \ dy.$$

Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt (2008)

 $\tilde{\Sigma}_{\delta} := \bigcup_{S \in \Sigma} SO(n)(I + \delta S) \quad \text{for some finite set of positive matrices } \Sigma \subset \mathbb{R}^{n \times n}_{\text{sym}}.$

Suppose $W_{\delta} : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ are

- Carathéodory, frame indifferent,
- $W_{\delta}(x, X) = 0 \iff X \in \tilde{\Sigma}_{\delta},$ • $W_{\delta}(x, X) \ge \mathfrak{C} \operatorname{dist}^2(X, \tilde{\Sigma}_{\delta}).$

Let

$$V_{\delta}: \Omega \times \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R}, \quad V_{\delta}(x, Y) := \frac{1}{\delta^2} W_{\delta}(x, I + \delta Y).$$

If $V_{\delta} \to V$ uniformly in x and locally uniformly Y, and $V(x, Y) \leq \mathfrak{U}(|Y|^2 + 1)$, then

$$\frac{1}{\delta^2} \int_{\Omega} W_{\delta} \left(x, I + \delta \nabla u(x) \right) \, dx \quad \stackrel{\Gamma}{\longrightarrow} \quad \int_{\Omega} V^{\operatorname{qcls}} \left(x, \mathfrak{E}u(x) \right) \, dx$$

with

$$V^{\mathrm{qcls}}(x,Y) = \inf_{\varphi \in C^\infty_c(\mathbb{I}^n;\mathbb{R}^n)} \int_{\mathbb{I}^n} V\Big(x,Y + \mathfrak{E}\varphi(y)\Big) \, dy.$$

Our starting point: In case we have a fine periodic structure, do we also get a commuting diagram?

Does the family of limits also Γ-converge,

- Does the family of limits also Γ-converge,
- ▶ and does the order matter?

- Does the family of limits also Γ -converge,
- ▶ and does the order matter?
- ▶ What about simultaneous limits?

- Does the family of limits also Γ-converge,
- ▶ and does the order matter?
- ▶ What about simultaneous limits?

We have some sequence of Γ -converging families of functionals and another family.

- Does the family of limits also Γ -converge,
- ▶ and does the order matter?
- ▶ What about simultaneous limits?

We have some sequence of Γ -converging families of functionals and another family. What is the right notion of "convergence",

- Does the family of limits also Γ -converge,
- ▶ and does the order matter?
- ▶ What about simultaneous limits?

We have some sequence of Γ -converging families of functionals and another family. What is the right notion of "convergence", so that the latter also Γ -converges?

Basic framework

Our functionals will be of form

$$\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) \, dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}$$

with Ω open bounded in \mathbb{R}^n and 1

Basic framework

Our functionals will be of form

$$\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) \, dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}$$

with Ω open bounded in \mathbb{R}^n and 1 .

Definition

► A family $f_{\varepsilon}^{(j)}: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ fulfils a standard *p*-growth condition if there are $\alpha, \beta > 0$ independent of *j* and ε such that

$$\alpha |X|^p - \beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta (|X|^p + 1)$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$.

Basic framework

Our functionals will be of form

$$\mathcal{F}(u) := \begin{cases} \int_{\Omega} f(x, \nabla u(x)) \, dx & u \in W^{1,p}(\Omega; \mathbb{R}^m) \\ \infty & u \in L^p(\Omega; \mathbb{R}^m) \setminus W^{1,p}(\Omega; \mathbb{R}^m) \end{cases}$$

with Ω open bounded in \mathbb{R}^n and 1 .

Definition

• A family $f_{\varepsilon}^{(j)}: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ fulfils a standard *p*-growth condition if there are $\alpha, \beta > 0$ independent of *j* and ε such that

$$\alpha |X|^p - \beta \le f_{\varepsilon}^{(j)}(x, X) \le \beta(|X|^p + 1)$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$.

▶ Families

$$\{\{f_{\varepsilon}^{(j)}\}_{\varepsilon>0}\}_{j\in\mathbb{N}}$$
 and $\{f_{\varepsilon}^{(\infty)}\}_{\varepsilon>0}$

are equivalent on $U \subset \Omega$ open, if

$$\lim_{j \to \infty} \limsup_{\varepsilon \to 0} \int_{U} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| \, dx = 0$$

for every $R \geq 0$.

Theorem (Γ -closure on a single domain)

Suppose that the family of Borel functions

 $f_{\varepsilon}^{(j)}: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$

uniformly fulfils a standard p-growth condition.

Theorem (Γ -closure on a single domain)

Suppose that the family of Borel functions

$$f_{\varepsilon}^{(j)}: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$$

uniformly fulfils a standard p-growth condition.

 $\begin{array}{c|c} If & & \\ \mathcal{F}_{\varepsilon}^{(j)} & \xrightarrow{\approx on \ \Omega} & \mathcal{F}_{\varepsilon}^{(\infty)} \\ & & \\ & & \\ & & \\ & & \\ & & \\ \mathcal{F}_{0}^{(j)} \end{array}$

Theorem (Γ -closure on a single domain)

Suppose that the family of Borel functions

$$f_{\varepsilon}^{(j)}: \Omega imes \mathbb{R}^{m imes n} o \mathbb{R}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$$

uniformly fulfils a standard p-growth condition.

Key tool: Kristensen (1994); Fonseca, Müller, Pedregal (1998)

Lemma (Decomposition lemma)

Let $\{u_i\}_{i\in\mathbb{N}}$ be a bounded sequence in $W^{1,p}(\Omega; \mathbb{R}^m)$. There exists a subsequence $\{u_i\}_{k\in\mathbb{N}}$ and a sequence $\{v_k\}_{k\in\mathbb{N}} \subset W^{1,p}(\Omega; \mathbb{R}^m)$ such that

$$\lim_{k\to\infty}|\{\nabla v_k\neq\nabla u_{i_k}\}\cup\{v_k\neq u_{i_k}\}|=0$$

and $\{|\nabla v_k|^p\}_{k\in\mathbb{N}}$ is equi-integrable.

Moreover, if $u_i \rightarrow u$ in $W^{1,p}(\Omega; \mathbb{R}^m)$, then the v_k can be chosen in such a way that $v_k = u$ on $\partial\Omega$ and $v_k \rightarrow u$ in $W^{1,p}(\Omega; \mathbb{R}^m)$.

$$\begin{array}{c} \mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx} \mathcal{F}_{\varepsilon}^{(\infty)} \\ & \downarrow^{\Gamma(L^p)} & \downarrow^{\Gamma(L^p)} \\ \mathcal{F}_{0}^{(j)} \xrightarrow{\text{pointwise}}_{-\stackrel{\Gamma}{\Gamma(L^p)}} \mathcal{F}_{0}^{(\infty)} \end{array}$$

• Assume the vertical Γ -convergence.

$$\begin{array}{ccc} \mathcal{F}_{\varepsilon}^{(j)} & \xrightarrow{\approx} & \mathcal{F}_{\varepsilon}^{(\infty)} \\ & & & & & \\ & & & & & \\ & & & & & \\ \mathcal{F}_{0}^{(j)} & \xrightarrow{\mathrm{pointwise}}_{- & - & -} & \mathcal{F}_{0}^{(\infty)} \end{array}$$

- Assume the vertical Γ -convergence.
- For every $u \in L^p(\Omega; \mathbb{R}^m)$

$$\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).$$

$$\begin{array}{ccc} \mathcal{F}_{\varepsilon}^{(j)} & \stackrel{\approx}{\longrightarrow} \mathcal{F}_{\varepsilon}^{(\infty)} \\ & & & & \\ & & & & \\ \downarrow^{\Gamma(L^p)} & & & & \\ \mathcal{F}_{0}^{(j)} & \stackrel{\text{pointwise}}{- & - & - \\ \Gamma(L^p)} & \mathcal{F}_{0}^{(\infty)} \end{array}$$

- Assume the vertical Γ -convergence.
- For every $u \in L^p(\Omega; \mathbb{R}^m)$

$$\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).$$

• For every $u_j \to u$ in $L^p(\Omega; \mathbb{R}^m)$

$$\liminf_{j \to \infty} \mathcal{F}_0^{(j)}(u_j) \ge \mathcal{F}_0^{(\infty)}(u)$$

$$\begin{array}{ccc} \mathcal{F}_{\varepsilon}^{(j)} & \stackrel{\approx}{\longrightarrow} \mathcal{F}_{\varepsilon}^{(\infty)} \\ & & & & \\ & & & & \\ & & & & \\ \mathcal{F}_{0}^{(j)} & \stackrel{\mathrm{pointwise}}{- & & \\ & & - & - \\ & & & & \\ \mathcal{F}_{0}^{(j)} & \stackrel{\mathrm{pointwise}}{- & & \\ & & & \\ \mathcal{F}_{0}^{(\infty)} & \stackrel{\mathrm{pointwise}}{- & & \\ \mathcal{F}_{0}^{(\infty)} \end{array} \mathcal{F}_{0}^{(\infty)} \end{array}$$

- Assume the vertical Γ -convergence.
- For every $u \in L^p(\Omega; \mathbb{R}^m)$

$$\limsup_{j \to \infty} \mathcal{F}_0^{(j)}(u) \le \mathcal{F}_0^{(\infty)}(u).$$

• For every
$$u_j \to u$$
 in $L^p(\Omega; \mathbb{R}^m)$

$$\liminf_{j \to \infty} \mathcal{F}_0^{(j)}(u_j) \ge \mathcal{F}_0^{(\infty)}(u)$$

 Justification of our assumption by Urysohn property and pointwise convergence below.

If we assume equivalence and $\Gamma\text{-}\mathrm{convergence}$ on every open subset, then we get more information on density.

If we assume equivalence and $\Gamma\text{-}\mathrm{convergence}$ on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ -limit is deterministic).

If we assume equivalence and $\Gamma\text{-}\mathrm{convergence}$ on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ -limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

If we assume equivalence and $\Gamma\text{-}\mathrm{convergence}$ on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ -limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

 \blacktriangleright boundary values \checkmark

If we assume equivalence and $\Gamma\text{-}\mathrm{convergence}$ on every open subset, then we get more information on density.

 \blacktriangleright stochastic homogenization \checkmark

Random integral functionals that are periodic in law and ergodic are homogenizable (and the Γ -limit is deterministic).

 \blacktriangleright lower bound \checkmark

It may be relaxed to the Gårding type lower bound.

- \blacktriangleright boundary values \checkmark
- \blacktriangleright upper bound \checkmark

It may be relaxed for $j < \infty$.

Definition

We say that the family of integral functionals

$$\mathcal{F}_{\varepsilon}^{(j)}: \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0$$

with densities $f_{\varepsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

Definition

We say that the family of integral functionals

$$\mathcal{F}_{\varepsilon}^{(j)}: \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0$$

with densities $f_{\varepsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

• there is $\beta > 0$ such that

$$-\beta \le f_{\varepsilon}^{(j)}(x,X) \le \beta(|X|^p + 1)$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$,

Definition

We say that the family of integral functionals

$$\mathcal{F}_{\varepsilon}^{(j)}: \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0$$

with densities $f_{\varepsilon}^{(j)}$ is of uniform *p*-Gårding type on $U \subset \Omega$, if

• there is $\beta > 0$ such that

$$-\beta \le f_{\varepsilon}^{(j)}(x,X) \le \beta(|X|^p + 1)$$

for almost all $x \in \Omega$ and all $X \in \mathbb{R}^{m \times n}$,

• there are $\alpha_U > 0, \gamma_U \in \mathbb{R}$ such that

$$\mathcal{F}_{\varepsilon}^{(j)}(u,U) \ge \alpha_U \int_U |\nabla u(x)|^p \, dx - \gamma_U \int_U |u(x)|^p \, dx$$

for all $u \in W^{1,p}(U; \mathbb{R}^m)$.

Theorem

Suppose that the family of Borel functions

$$f_{\varepsilon}^{(j)}: \Omega imes \mathbb{R}^{m imes n} o \mathbb{R}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$$

Proposition

Suppose that the family $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon>0}$ with densities f_{ε} is of uniform p-Gårding type on Ω . Define for some null sequence $\lambda_k \searrow 0$

$$f_{\varepsilon}^{(k)}(x,X) := f_{\varepsilon}(x,X) + \lambda_k |X|^p$$

and denote by $\mathfrak{F}_{\varepsilon}^{(k)}$ the corresponding integral functionals.

Perturbation:

Perturbation:

Homogenization closure by Braides (1986)

Perturbation:

Homogenization closure by Braides (1986)

Perturbation:

Homogenization closure by Braides (1986)

linearization in the one-well case by Dal Maso, Negri, Percivale geometric linearization in the multiple-well case by Schmidt

Theorem (Commutability)

Suppose that the family of functionals

$$\mathcal{F}^{(j)}_{\varepsilon}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$$

with densities $f_{\varepsilon}^{(j)}$ is of uniform p-Gårding type on Ω .

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}^{(j)}_{\varepsilon}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$ with densities $f_{\varepsilon}^{(j)}$ is of uniform p-Gårding type on Ω . If $\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx (also \ for \ \varepsilon \ fixed)} \mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathcal{F}_{0}^{(j)}$ $\forall \varepsilon, R > 0: \lim_{j \to \infty} \int_{\Omega} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| \ dx = 0$

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}^{(j)}_{\varepsilon}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$ with densities $f_{\varepsilon}^{(j)}$ is of uniform p-Gårding type on Ω . If then $\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx (also \text{ for } \varepsilon \text{ fixed})} \mathcal{F}_{\varepsilon}^{(\infty)} \qquad \qquad \mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\Gamma - - -} \operatorname{lsc} \mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathcal{F}_{0}^{(j)}$ Г $\begin{array}{c} & & \\$ $\forall \varepsilon, R > 0: \lim_{j \to \infty} \int_{\Omega} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| \ dx = 0$

Theorem (Commutability)

Suppose that the family of functionals $\mathcal{F}^{(j)}_{\varepsilon}, \ j \in \mathbb{N} \cup \{\infty\}, \ \varepsilon > 0,$ with densities $f_{\varepsilon}^{(j)}$ is of uniform p-Gårding type on Ω . If then $\mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\approx (also \text{ for } \varepsilon \text{ fixed})} \mathcal{F}_{\varepsilon}^{(\infty)} \qquad \qquad \mathcal{F}_{\varepsilon}^{(j)} \xrightarrow{\Gamma - - -} \operatorname{lsc} \mathcal{F}_{\varepsilon}^{(\infty)}$ $\mathcal{F}_{0}^{(j)}$ Г $\begin{array}{c} \downarrow \\ \mathcal{F}_{0}^{(j)} & \xrightarrow{pointwise} \\ \mathcal{F}_{0}^{(j)} & \xrightarrow{\mathcal{F}_{0}^{(\infty)}} \end{array} \\ \end{array}$ $\forall \varepsilon, R > 0: \lim_{j \to \infty} \int_{C} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| \ dx = 0$

- ▶ Müller, Neukamm
- ▶ our setting

Theorem

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. Suppose that the family of functionals $\mathcal{F}_{\varepsilon}^{(j)}$, $j \in \mathbb{N} \cup \{\infty\}, \varepsilon > 0$, with densities $f_{\varepsilon}^{(j)} : \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ is of uniform p-Gårding type on Ω . Let us have $\{j_k\}_{k \in \mathbb{N}} \subset \mathbb{N}$ and $\{\varepsilon_k\}_{k \in \mathbb{N}}$ with $\varepsilon_k \searrow 0$. Assume that

•
$$\Gamma(L^p) - \lim_{\varepsilon \to 0} \mathcal{F}^{(\infty)}_{\varepsilon} = \mathcal{F}^{(\infty)}_0,$$

• $\lim_{k \to \infty} \int_{\Omega} \sup_{|X| \le R} |f^{(j_k)}_{\varepsilon_k}(x, X) - f^{(\infty)}_{\varepsilon_k}(x, X)| \ dx = 0 \quad \text{for every } R > 0.$

Then

$$\Gamma(L^p) - \lim_{k \to \infty} \mathcal{F}_{\varepsilon_k}^{(j_k)} = \mathcal{F}_0^{(\infty)}.$$

E.g., this condition is surely satisfied if

$$\forall R > 0: \lim_{j \to \infty} \sup_{\varepsilon > 0} \int_{\Omega} \sup_{|X| \le R} |f_{\varepsilon}^{(j)}(x, X) - f_{\varepsilon}^{(\infty)}(x, X)| \ dx = 0$$

p = 1 case

The counterexample is based on Bouchitte, Dal Maso (1993). It shows that the consequence regarding perturbation cannot hold:

Counterexample for p = 1 case

Let us consider the scalar case m = 1 with $\Omega := I = (-1, 1)$. Take

$$f: \mathbb{R} \to \mathbb{R}, \quad f(\xi) := \max\{|\xi|, 2|\xi| - 1\}.$$

Counterexample for p = 1 case

Let us consider the scalar case m = 1 with $\Omega := I = (-1, 1)$. Take

$$f: \mathbb{R} \to \mathbb{R}, \quad f(\xi) := \max\{|\xi|, 2|\xi| - 1\}.$$

It is

- convex,
- ▶ not 1-homogenous,
- satisfies the linear growth condition $|\xi| \le f(\xi) \le 2|\xi|$,
- its recession function is $\underline{f}(\xi) = \lim_{t \to \infty} \frac{f(t\xi)}{t} = 2|\xi|.$

Counterexample for p = 1 case

Let us consider the scalar case m = 1 with $\Omega := I = (-1, 1)$. Take

$$f: \mathbb{R} \to \mathbb{R}, \quad f(\xi) := \max\{|\xi|, 2|\xi| - 1\}.$$

It is

- convex,
- ▶ not 1-homogenous,
- satisfies the linear growth condition $|\xi| \le f(\xi) \le 2|\xi|$,
- its recession function is $\underline{f}(\xi) = \lim_{t \to \infty} \frac{f(t\xi)}{t} = 2|\xi|.$

The constant sequence of functionals on $L^1(I)$ given by \mathcal{F} ,

$$\mathcal{F}(u) := \begin{cases} \int_{-1}^{1} f(u'(x)) \ dx, & u \in W^{1,1}(I), \\ \infty, & \text{else on } L^{1}(I), \end{cases}$$

 $\Gamma\text{-converges}$ to its relaxation \mathcal{F}_0 that is finite exactly on BV(I) and there takes the values

$$\begin{aligned} \mathcal{F}_{0}(u) &= \int_{-1}^{1} f(u'(x)) \ dx + \int_{-1}^{1} \underline{f}\left(\frac{dD^{s}u}{d|D^{s}u|}(x)\right) d|D^{s}u|(x) \\ &= \int_{-1}^{1} f(u'(x)) \ dx + 2|D^{s}u|(I), \end{aligned}$$

Counterexample for p = 1 case (2)

Take

$$g_{\varepsilon}(x,\xi) := f\left(\frac{\xi}{a_{\varepsilon}(x)}\right) a_{\varepsilon}(x)$$

where

$$a_{\varepsilon}(x) := \begin{cases} 1, & |x| \ge \varepsilon, \\ \frac{1}{2\varepsilon}, & |x| < \varepsilon. \end{cases}$$

The (one-index) family $\{g_{\varepsilon}\}_{\varepsilon>0}$ equivalent to the constant famil given by f:

Take

$$g_{\varepsilon}(x,\xi) := f\left(\frac{\xi}{a_{\varepsilon}(x)}\right) a_{\varepsilon}(x)$$
where

$$a_{\varepsilon}(x) := \begin{cases} 1, & |x| \ge \varepsilon, \\ \frac{1}{2\varepsilon}, & |x| < \varepsilon. \end{cases}$$
The (one-index) family $\{g_{\varepsilon}\}_{\varepsilon > 0}$ is
equivalent to the constant family
given by f :

$$\lim_{\varepsilon \to 0} \int_{-1}^{1} \sup_{|\xi| \le R} |g_{\varepsilon}(x,\xi) - f(\xi)| \, dx = \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \sup_{|\xi| \le R} |\frac{1}{2\varepsilon} f(2\varepsilon\xi) - f(\xi)| \, dx$$

$$\leq \limsup_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \sup_{|\xi| \le R} 4|\xi| \, dx$$

$$= \lim_{\varepsilon \to 0} \sup_{\varepsilon \to 0} 8R\varepsilon$$

$$= 0$$

Counterexample for p = 1 case (3)

Let us denote $\lambda_{\varepsilon} := a_{\varepsilon} \mathcal{L}^1 \in M(I)$. Since for $u \in W^{1,1}(I)$

$$Du = u'\mathcal{L}^1 = \frac{u'}{a_\varepsilon}\lambda_\varepsilon$$

the corresponding functionals ${\mathfrak G}_{\varepsilon}$ have on $W^{1,1}(I)$ the following representation

$$\mathfrak{G}_{\varepsilon}(u) = \int_{-1}^{1} g_{\varepsilon}(x, u'(x)) \ dx = \int_{-1}^{1} f\left(\frac{dDu}{d\lambda_{\varepsilon}}(x)\right) d\lambda_{\varepsilon}(x).$$

Since

$$\lambda_{\varepsilon} \stackrel{*}{\rightharpoonup} \lambda := \delta_0 + \mathcal{L}^1 \quad \text{in } M(I)$$

Counterexample for p = 1 case (3)

Let us denote $\lambda_{\varepsilon} := a_{\varepsilon} \mathcal{L}^1 \in M(I)$. Since for $u \in W^{1,1}(I)$

$$Du = u'\mathcal{L}^1 = \frac{u'}{a_\varepsilon}\lambda_\varepsilon$$

the corresponding functionals $\mathfrak{G}_{\varepsilon}$ have on $W^{1,1}(I)$ the following representation

$$\mathfrak{G}_{\varepsilon}(u) = \int_{-1}^{1} g_{\varepsilon}(x, u'(x)) \ dx = \int_{-1}^{1} f\left(\frac{dDu}{d\lambda_{\varepsilon}}(x)\right) d\lambda_{\varepsilon}(x).$$

Since

$$\lambda_{\varepsilon} \stackrel{*}{\rightharpoonup} \lambda := \delta_0 + \mathcal{L}^1 \quad \text{in } M(I)$$

it follows by the results from Buttazzo, Freddi (1991) that $\mathfrak{G}_{\varepsilon}$ $\Gamma(L^1)$ -converges to \mathfrak{G}_0 given by

$$\mathcal{G}_{0}(u) = \int_{-1}^{1} f\left(\frac{dD_{\lambda}^{a}u}{d\lambda}(x)\right) d\lambda(x) + \int_{-1}^{1} \underline{f}\left(\frac{dD_{\lambda}^{s}u}{d|D_{\lambda}^{s}u|}(x)\right) d|D_{\lambda}^{s}u|(x)$$

if $u \in BV(I)$ and ∞ otherwise, where

$$Du = D^a_\lambda u + D^s_\lambda u, \quad D^a_\lambda u \ll \lambda, \quad D^a_\lambda u \perp \lambda.$$

Therefore, for $u \in BV(I)$

$$\begin{aligned} \mathcal{F}_{0}(u) &= \int_{-1}^{1} f(u'(x)) \, dx + 2 \|D^{s}u\|, \\ \mathcal{G}_{0}(u) &= \int_{-1}^{1} f\left(\frac{dD_{\lambda}^{a}u}{d\lambda}(x)\right) d\lambda(x) + 2 \|D_{\lambda}^{s}u\|. \end{aligned}$$

Therefore, for $u \in BV(I)$

$$\begin{aligned} \mathcal{F}_{0}(u) &= \int_{-1}^{1} f(u'(x)) \, dx + 2 \| D^{s} u \|, \\ \mathcal{G}_{0}(u) &= \int_{-1}^{1} f\left(\frac{dD_{\lambda}^{a} u}{d\lambda}(x)\right) d\lambda(x) + 2 \| D_{\lambda}^{s} u \|. \end{aligned}$$

Choose $u := \chi_{(0,1)} \in SBV(I)$. Then $Du = \delta_0$ and

$$D^{a}u + D^{s}u = 0 \cdot \mathcal{L}^{1} + \delta_{0},$$

$$D^{a}_{\lambda}u + D^{s}_{\lambda}u = \chi_{\{0\}} \cdot \lambda + 0.$$

Hence

$$\mathfrak{F}_0(\chi_{(0,1)}) = 2$$
 and $\mathfrak{G}_0(\chi_{(0,1)}) = 1$.

Problems: families whose difference grows linearly for large X at least on some set of $\boldsymbol{x}.$

Problems: families whose difference grows linearly for large X at least on some set of $\boldsymbol{x}.$

Possible solution: to assume for some $\delta \in (0, 1)$ and $\gamma > 0$

$$|f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| \le \gamma |X|^{1-\delta}$$

Problems: families whose difference grows linearly for large X at least on some set of $\boldsymbol{x}.$

Possible solution: to assume for some $\delta \in (0, 1)$ and $\gamma > 0$

$$|f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| \leq \gamma |X|^{1-\delta}$$

Not sufficient: convergence of recession functions.

Problems: families whose difference grows linearly for large X at least on some set of x.

Possible solution: to assume for some $\delta \in (0, 1)$ and $\gamma > 0$

$$|f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)| \le \gamma |X|^{1-\delta}$$

Not sufficient: convergence of recession functions.

$\begin{array}{l} \begin{array}{l} \text{Definition} \\ \text{Families } \{\{f_{\varepsilon}^{(j)}\}_{\varepsilon>0}\}_{j\in\mathbb{N}} \text{ and } \{f_{\varepsilon}^{(\infty)}\}_{\varepsilon>0} \text{ are equivalent at } \infty \text{ on } U\subset\Omega, \text{ if for} \\ \\ r_{\varepsilon}^{(j)}(R) := \underset{x\in U}{\text{ess sup}} \sup_{|X|\geq R} \frac{|f_{\varepsilon}^{(j)}(x,X) - f_{\varepsilon}^{(\infty)}(x,X)|}{|X|} \\ \\ \text{it holds} \\ \\ \underset{R\to\infty}{\lim} \underset{j\to\infty}{\lim} \underset{\varepsilon\to0}{\lim} \sup_{\varepsilon\to0} r_{\varepsilon}^{(j)}(R) = 0. \end{array}$

Theorem (Γ -closure on a single domain)

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. Suppose that the family of Borel functions $f_{\varepsilon}^{(j)}: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}, \ j \in \mathbb{N}, \ \varepsilon > 0$, uniformly fulfils a standard linear growth condition. Assume that

