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I'-convergence

Definition

Let {F; : M — [—0c0,00]}jen be a sequence of functionals on a metric space

(M, d). Then {F;},en I-converges at € M to some p € [—00, o0] if the following
conditions are satisfied:

> (liminf-inequality) If z; — « in M, then
lim inf & (z;) > p.
j—oo
> (recovery sequence) There exists a sequence x; — « in M such that
lim F;(zj) = p.
j—ro0
Denotation:
pu="T(d)- lim F;(x).
j—o0

We say that {F;};jen I-converges to some functional Foo, if it I-converges to
Foo(x) at every z € M.
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Fundamental properties

T-limits are always lower semicontinuous.
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Fundamental properties

T-limits are always lower semicontinuous.
Let {Fj : M — (—o00,00]}jen be a sequence of functionals. Suppose
> there exists a compact set K C M such that for all j € N

f J; = inf F;(x).
zf 95(e) = mf 95(a)

> I'(d)- lim Fj = Feo.
j—o0
Then

I min Fo(z) = lim inf F;(z).
reM j—ooxzeEM

Moreover, if {x;}jen is a precompact sequence such that

l F; =1 f F;
b g = b i e

then every limit of a subsequence of {z;}jen s a minimum point for Feo.
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Fundamental properties

T-limits are always lower semicontinuous.

Let {Fj : M — (—o00,00]}jen be a sequence of functionals. Suppose
> there exists a compact set K C M such that for all j € N

inf F;(z) = inf F;(x).
ot T5(@) = inf 5(2)
> I'(d)- lim Fj = Feo.
j—oo
Then
I min Fo(z) = lim inf F;(z).
reM j—ooxzeEM

Moreover, if {x;}jen is a precompact sequence such that

l F; =1 f F;
b g = b i e

then every limit of a subsequence of {z;}jen s a minimum point for Feo.
Theorem (Urysohn property)
Take X € [—00,00] and x € M. Then

A=T(d)- lim F;(z) < V{jx}ren CN Hki}ien C N: A =T(d)- lim F;, ()
j—o0 l—o0 l
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» On a separable metric space every sequence of functionals always contains at
least a subsequence that I'-converges.
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» On a separable metric space every sequence of functionals always contains at
least a subsequence that I'-converges.

» If we have a constant sequence, i.e., F; = J for all j € N, then

I'(d)- lim F; =lscF

Jj—o0

where Isc stands for lower semicontinuous envelope (in the metric d).
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» On a separable metric space every sequence of functionals always contains at
least a subsequence that I'-converges.

» If we have a constant sequence, i.e., F; = J for all j € N, then

I'(d)- lim F; =lscF

Jj—o0

where Isc stands for lower semicontinuous envelope (in the metric d).

» For a non-increasing sequence {F;};en, it holds

I'(d)- lim F; =lsc ( lim 5"j> =lsc < in&&’}).
. . 2

Jj—>0o0 J—o0 J
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» On a separable metric space every sequence of functionals always contains at
least a subsequence that I'-converges.

» If we have a constant sequence, i.e., F; = J for all j € N, then
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» On a separable metric space every sequence of functionals always contains at
least a subsequence that I'-converges.

» If we have a constant sequence, i.e., F; = J for all j € N, then

I'(d)- lim F; =lscF

Jj—roo
where Isc stands for lower semicontinuous envelope (in the metric d).

» For a non-increasing sequence {F;};en, it holds

I'(d)- lim F; =lsc ( lim 5"j> =lsc < inf ?j).
j j jEN

Jj—>0o0 J—o0 J

» If {F;},en is non-decreasing, then

I'(d)- lim F; = lim <lsc§j) = sup (1503’}-).

Jj—oo Jj—oo jJEN

> {F;}jen I-converges if and only if {Isc F;};cy I-converges (and I'-limits then
coincide).



Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed
upon as minimizers of fﬂ W(z, V'u(;t)) dz with W being the stored-energy
function. Let us suppose:

» W is frame-indifferent with W (z,I) = 0 and

> W(z,X) > Cdist? (X, S0(n)).
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Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed
upon as minimizers of fﬂ W(z, V'u(;t)) dz with W being the stored-energy
function. Let us suppose:
» W is frame-indifferent with W (z,I) = 0 and
> W(z,X) > Cdist? (X, S0(n)).
If the displacements are small, i.e. v(z) = x 4+ du(z), then
1 1
W T+ 6Y) = 20 W, )Yy, Yoyn]
The forth-order tensor A(z) := 62 W (x, I) is called the elasticity tensor (at ).
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Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed
upon as minimizers of fﬂ W(z, V'u(;t)) dz with W being the stored-energy
function. Let us suppose:
» W is frame-indifferent with W (z,I) = 0 and
> W(z,X) > Cdist? (X, S0(n)).
If the displacements are small, i.e. v(z) = x 4+ du(z), then
%W(m, I+6Y) = %a%’VW(x, D)[Ysym, Yeym)-

The forth-order tensor A(z) := 02 W (x, I) is called the elasticity tensor (at ).
The corresponding energy given by the integral functional (with €u := (Vu)sym)

£0) () = % fg A(z)[Cu(x), Cu(z)] dz, u € uo+ WOI’Q(Q;]R"),
0, else on L2(;R™),

is a good approximation of the original energy

5(5) fQ (z, I+ 6Vu(z)) de, wu € ug+ Wol’Q(Q; R"™),
oo, else on L2(Q;R"),

since

I(L?)- lim @) = ¢,
5—0

Dal Maso, Negri, Percivale (2002)
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genization (and relaxati

Suppose W : R" x R™X" — R
» is I"-periodic in the first variable (with I := (0, 1)),
> o] X|P < W(z, X) < B(IX]P +1).
Under these conditions the family of functionals £, € > 0, given by

z.v dz, ye WbHP(Q;R™),
e(y) =4 JaW(EVY@)dz, y (%R™)
0, else on LP(;R™),

7/29



genization (and relaxati

Suppose W : R" x R™X" — R
» is I"-periodic in the first variable (with I := (0, 1)),
> alX[P < W(z,X) < B(IX[P+1).
Under these conditions the family of functionals £, € > 0, given by

z.v dz, ye WbHP(Q;R™),
e(y) =4 JaW(EVY@)dz, y (%R™)
0, else on LP(;R™),

T'(LP)- converges to

Jo, Whom (Vy(2)) dz,  y € WP(Q;R™),
8hom(y) = 2
00, else on LP(;R™).

The homogenized stored-energy function is given by
1
Whom (X) = 1nf 1nf{k—n / W(z,X 4+ Vo(x)) dx: ¢ € ngl’(k:]ln;Rm)} .
k: n

Braides (1985), Miiller (1987) 7/29



Linearization + homogenization = 7

If may have a material with fine periodic structure and small displacements. In
this case:

L oW (2,14 6Vu(@) de —— [ A(2) [eu(a), Cu(a)] dz

& fQ Whom (1 + 6Vu(x)) dx

» linearization v

» homogenization v/
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Linearization + homogenization = 7

If may have a material with fine periodic structure and small displacements. In
this case:

L oW (2,14 6Vu(@) de —— [ A(2) [eu(a), Cu(a)] dz

Elg fQ Whom (I + 6Vu(x)) dx f) fQ Apom[Cu(z), Cu(z)] dz

» linearization v/
» homogenization v/

» commutability: Miiller, Neukamm (2011)
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Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt
(2008)

PIPES U SO(n)(I+6S) for some finite set of positive matrices & C RY.
Suppose W5 : R™ x R"*X" — R are
» Carathéodory, frame indifferent,

> Ws(z,X) =0 < XEig,
> Ws(z, X) > €dist?(X, 3s).
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Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt
(2008)

PIPES U SO(n)(I+6S) for some finite set of positive matrices & C RY.

Suppose W5 : R™ x R"*X" — R are
» Carathéodory, frame indifferent,
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Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt
(2008)

PIPES U SO(n)(I+6S) for some finite set of positive matrices & C RY.

Suppose W5 : R™ x R"*X" — R are
» Carathéodory, frame indifferent,
> Ws(z,X) =0 < X €33,
> Ws(z, X) > €dist?(X, 3s).
Let
Vs i QxR LR, Vi(z,Y) = J%W(;(m,l—i-SY).

Sym

If Vs — V uniformly in = and locally uniformly Y, and V(z,Y) < 4(|Y|?2 + 1), then

1
—2/ W (ac,l+5Vu(ac)) dr 5 / yacts (w,@u(x)) dz
0 Jo Q

with

vaels(z v) = inf V(iz, Y +¢ dy.
(z,Y) wech(un;Rn)/ﬂn ( () dy

Our starting point: In case we have a fine periodic structure, do we also get a
commuting diagram?
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Commutability of I'-limits

: r
gjg]) - - C;éoo)
We have some doubly indexed family of function-
als. For one index fixed they I'-converge.

5
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Commutability of I'-limits

: r
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: We have some doubly indexed family of function-
: als. For one index fixed they I'-converge.

T : ? » Does the family of limits also I'-converge,
|
|
|
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Commutability of I'-limits

. T
5&]) - - C;QOO)
: We have some doubly indexed family of function-
: als. For one index fixed they I'-converge.
T : ? » Does the family of limits also I'-converge,
| » and does the order matter?
|



Commutability of I'-limits

5 ___r . (o)
AN N : We have some doubly indexed family of function-
. - : als. For one index fixed they I'-converge.
r N '? » Does the family of limits also I'-converge,
R | » and does the order matter?
\\J - » What about simultaneous limits?
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Commutability of I'-limits and I'-closure

: r
AN . : We have some doubly indexed family of function-
AN : als. For one index fixed they I'-converge.
N7
T S : ? » Does the family of limits also I'-converge,
AN | » and does the order matter?
oo » What about simultaneous limits?
(€ I (o0)
I > Jy
3r§j) 3r§<><>)
We have some sequence of I'-converging families
r of functionals and another family.



Commutability of I'-limits and I'-closure

. r
AN . : We have some doubly indexed family of function-
AN : als. For one index fixed they I'-converge.
N7
T AN : ? » Does the family of limits also I'-converge,
AN | » and does the order matter?
oo » What about simultaneous limits?
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?
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right notion of ”convergence”,
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Commutability of I'-limits and I'-closure

. r
AN . : We have some doubly indexed family of function-
AN : als. For one index fixed they I'-converge.
N7
T AN : ? » Does the family of limits also I'-converge,
AN | » and does the order matter?
oo » What about simultaneous limits?
R > g
?
|
|
: We have some sequence of I'-converging families
r T of functionals and another family. What is the
| right notion of ”convergence”, so that the latter
I also I'-converges?
|
(6) R (c0)
T N



Basic framework

Our functionals will be of form

F(u) = { Jo f@ V“(w)) dz  uwe WhHP(Q;R™) 1
u € LP(;R™)\ WLP(Q; R™)

with Q open bounded in R™ and 1 < p < oo.



Basic framework

Our functionals will be of form

) = { fo I Vu(:p)) de  uwe WhP(Q;R™)
u € LP(Q;R™) \ WLP(Q; R™)

with ©Q open bounded in R™ and 1 < p < oo.

> A family féj) : Q x R™MX™ — R fulfils a standard p-growth condition if there
are a, 8 > 0 independent of j and e such that

alX|P - B < f9 (@, X) < BUXIP +1)

for almost all x € Q2 and all X € R™X",



Basic framework

Our functionals will be of form

) = { fo I Vu(:p)) de  uwe WhP(Q;R™)
u € LP(Q;R™) \ WLP(Q; R™)

with ©Q open bounded in R™ and 1 < p < oo.

> A family fgu) : Q x R™MX™ — R fulfils a standard p-growth condition if there
are a, 8 > 0 independent of j and e such that

alX|P - B < f9 (@, X) < BUXIP +1)

for almost all x € Q2 and all X € R™X",

> Families )
{FYes0}jen and  {f£%}es0

are equivalent on U C () open, if
lim lim sup/ sup |fg<j>(ac7 X) — fg(oo)(ar:7 X)|dx =0
J—=0  £0 |X|<R

for every R > 0.



Basic result on I'-closure

Suppose that the family of Borel functions
9. xR™" 4R, j € NU{oo}, e >0,

uniformly fulfils a standard p-growth condition.
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Basic result on I'-closure

Suppose that the family of Borel functions
9. xR™" 4R, j € NU{oo}, e >0,

uniformly fulfils a standard p-growth condition.

If then

54 R F) = (o)
!
!
|

I(LP) r(LP) : (LP)

|
|

56 gl TTEE_ L, 5;((}o)



Tools for the proof

Key tool: Kristensen (1994); Fonseca, Miiller, Pedregal (1998)

Let {u;}ien be a bounded sequence in WP (Q;R™). There exists a subsequence
{ui, }ren and a sequence {v}ren C WHP(Q;R™) such that

lim {Voug # Vug, } U{vg # ug, } =0
k— 00

and {|Vvg|P}ren s equi-integrable.

Moreover, if u; — u in WHP(Q;R™), then the vy can be chosen in such a way
that v, = u on OQ and v, — u in WHP(Q;R™).
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Idea for the proof

F(0) = (o)

(LP)

(]) pointwise (
0o ;(z;) 0

» Assume the vertical I'-convergence.



Idea for the proof

?gj) = géoo)

|

|
J{r(u’) I T(LP)

|

+

(]) pointwise (
0o ;(z;) 0
» Assume the vertical I'-convergence.
» For every u € LP(Q2; R™)

lim sup ?(()j) (u) < 5(()00) (u).

Jj—oo



Idea for the proof

50

|

|
J{r(u’) I T(LP)

|

+

(]) pointwise (
0o ;(z;) 0

» Assume the vertical I'-convergence.

» For every u € LP(Q2; R™)

lim sup ?(()j)(u) < 5(()00)(u).
Jj—o0
» For every u; — w in LP(Q;R™)

lim inf 537) (uj) > fﬂ()oo) (u)

J—ro0



Idea for the proof

) —E lo0)
|
|

r(LP) | T(LP)

|
R he

() Peimise o (oo)
3:0 T(LP) 0

» Assume the vertical I'-convergence.
» For every u € LP(Q2; R™)

lim sup ?(()j) (u) < ?(()OO) (u).
Jj—o0

» For every u; — w in LP(Q;R™)

lim inf 537) (uj) > 3"(()00) (u)

J—ro0

» Justification of our assumption by Urysohn property and pointwise
convergence below.
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Possible extensions

» variable domain v

If we assume equivalence and I'-convergence on every open subset, then we
get more information on density.

» stochastic homogenization v/

Random integral functionals that are periodic in law and ergodic are
homogenizable (and the I'-limit is deterministic).

» lower bound v

It may be relaxed to the Garding type lower bound.
» boundary values v/
» upper bound v

It may be relaxed for j < oo.
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We say that the family of integral functionals
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Garding type functionals

We say that the family of integral functionals

79 . jeNU{xo}, >0
with densities fe(j)
> there is § > 0 such that

is of uniform p-Garding type on U C 2, if

-8 < 19 (2, %) < BOXIP +1)

for almost all z € Q and all X € R"™*"™,
> there are ay > 0, vy € R such that

ffgf)(u,U)zaU/ |Vu(a:)|pdmf'yU\/ [u(z)[P dw
U U

for all w € WLP(U;R™).



I'-closure for Garding type functionals

Suppose that the family of Borel functions
9. QxR™" SR, jeNU{oo}, € >0,

is of uniform p-Garding type.

It then
g ~ on Q X &
g F(o°) 51 = ()
|
|
l
L(LP) T (LP) : I(LP)
|
l
(4) (j) _ _ _poimtwise (00)
Fo F5 P > S



Addition trick

Suppose that the family {Fe}e>o with densities fe is of uniform p-Gdrding type
on Q. Define for some null sequence A\ \( 0

B (2, X) == fe(z, X) + M| X|P

and denote by ffgk) the corresponding integral functionals.

If then

50 G Fe
|

|

|

r(LP) T(LP) : T(LP)

|

|

- +~

(k) (k) _ _ _pomtwise

Fo To I(LP), inf rJa
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~
~

Fe =m—m—m—m—m———=—os= G,

> Perturbation: 4

Homogenization closure by Braides (1986)
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Consequences

~
~

Fe =m—m—m—m—m———=—os= G,

> Perturbation: 4

F() F(o0)
| N |
TN |
| N |
I ~ T I

> Relaxation: . S T
| N |
1 RN
A pointwise Ao

lsc FU) - -------- > 1sc F(=2)

linearization in the one-well case by Dal Maso, Negri, Percivale

geometric linearization in the multiple-well case by Schmidt
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I'-commuting diagrams

Suppose that the family of functionals

79 i eNU{co}, € >0,
)

with densities f27’ is of uniform p-Garding type on .
If then
. ~ (also for e fizved) . I
g9 F{0) G comocoocs > Isc )
|
|
l
r r T
|
l
j (G) - 2 (o)
r;f)f) G = > J

Ve,R>0: _lim/ sup |F9 (z, X)— £ (z, X)| dz = 0
i=o Jq IX|<R

» Miiller, Neukamm
> our setting
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1)



~ (also for e fixed)

rjré])\\ Stéoo)
\\\\\1:\\\ r //// :
\\\ Tl r |
A Y K !
r lsc?éj)**5*9lsc?§°°> '
|
|
|
|
|



~ (also for e fixed)

59 = 5i>)
A P
N p~~_ T p |
N S~ P I
N ~ .. ' |
S4 ;\$ K I
. |
r 1scf7"£-ﬂ> ****915‘0?200) | r
. N |
. . |
// ~ r |
,r \\\ I
g NN



Simultaneous limits

Let Q@ C R™ be bounded and open. Suppose that the family of functionals ?éj),
j € NU{oo}, € > 0, with densities fE(J) : QX R™X™ — R is of uniform p-Gdarding
type on Q. Let us have {jk tren C N and {e }ren with e, (0. Assume that

> F(LP)-eliEBffgc’o) =),

> lim / sup |f8(i’“)(x,X) - fe(:o)(a:,X)\ dr =0 for every R > 0.
F=oo Ja XISk

Then i
T(LP)- lim TG = 53,

— 00

E.g., this condition is surely satisfied if

VR >0: lim sup/ sup |f5<j>(z,X)ffs(oo)(z,X)|d:p:O
J2©e>0 Jo |XI<R



?g(;j) _— 35:00)
|
|
rl : o Now suppose p = 1. Then I'-limits below
v would be finite on BV (Q; R™).
l
(J) - ___ (c0)
T * F,

The counterexample is based on Bouchitte, Dal Maso (1993). It shows that the
consequence regarding perturbation cannot hold:

~

Fe—,



Counterexample for p =1 case

Let us consider the scalar case m = 1 with Q :=1 = (—1,1). Take

fiR=R, f(§) = max{|¢], 2[¢] — 1}.



Counterexample for p =1 case

Let us consider the scalar case m = 1 with Q :=1 = (—1,1). Take
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Counterexample for p =1 case

Let us consider the scalar case m = 1 with Q :=1 = (—1,1). Take
fiR—=R, f(§) := max{[¢], 2/¢| — 1}

It is
> convex,
» not 1-homogenous,

» satisfies the linear growth condition || < f(§) < 2/¢],

» its recession function is f(§) = lim @ = 2|¢|.
- t— oo
The constant sequence of functionals on L'(I) given by F,

gy { S P @) da, we WD),
’ 00 else on L' (I),

)

T'-converges to its relaxation Fo that is finite exactly on BV (I) and there takes
the values

Fo(u)

1
-1

1
/ F@/ () dz + / I (8% (2)) dID*ul(x)
-1
1

/ f(u'(z)) dz + 2|D*u|(I),
1



Counterexample for p = 1 case (2)

Take
9:(2,€) == f (3557 ac(@)

where

17
ae(z) :== { 1
2e?

The (one-index) family {gc}e>o0 is
equivalent to the constant family
given by f:

|z| > e,
|z| < e.

1
limsup/ sup |ge(z,&) — f(§)| dx
e—0 _1 1€ISR

1/2¢

[x|=¢ [x|<e

1 112¢

limsup/ sup |5 f(26€) — f()| da
e=0 J_l§ISR

€
limsup/ sup 4/¢| dz
e—0 J__I¢€I<R
lim sup 8 Re
e—0

0

N
o
N}



Counterexample for p =1 case (3)

Let us denote \c := ac.L' € M(I). Since for u € W11(I)
u/
Du=u/L'=—X\

Qg

the corresponding functionals G have on W1(I) the following representation
1 1

Ge (u) = / g (0, (2)) do = / £ (4R (2)) dAc (a).

-1 -1

Since .
de 2 A:=8p+LY in M(I)



Counterexample for p =1 case (3)

Let us denote \c := ac.L' € M(I). Since for u € W11(I)
u/
Du=wtt=—X
Qg

the corresponding functionals G have on W1(I) the following representation

1 1
9E(u):/ ge(z, v (z)) d:z;:/ F (4R (2)) de ().

1 1

Since .
de 2 A:=8p+LY in M(I)

it follows by the results from Buttazzo, Freddi (1991) that . T'(L')-converges to
SGo given by

1 1
So(u) = f dDiu z) | dA\(z +/ f %(x) d|D}ul(z
o(u) /_1 ( 7 ( )) (z) _1,(d|D>\ | ) | DS ul(z)

if w € BV(I) and oo otherwise, where

Du = D§u + D3u, Su <A, DSu Ll A



Counterexample for p = 1 case (4)

Therefore, for u € BV (I)

Fo(u)

1
/ f( (2)) dz + 2||D*ul|,
-1

! dD%u s
f ( D4 <x>) dA(z) + 2| D3 ul.
-1

So(u)



Counterexample for p = 1 case (4)

Therefore, for u € BV (I)

1
Fo(u) = / f('(2)) da + 2| Dul|,

—1

! dD§
So(u) = / f( Y (33)) dA(x) + 2[| DS ul|-

-1

Choose u := x(g,1) € SBV(I). Then Du = §p and
D%+ D%y = 0-L'+ 6,
Diu—}—Diu = X{o} - A+ 0.

Hence
Folxe,1)) =2 and  So(x(o,1)) = 1.



Additional condition at oo

Problems: families whose difference grows linearly for large X at least on some set
of x.
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Additional condition at oo

Problems: families whose difference grows linearly for large X at least on some set
of z.

Possible solution: to assume for some § € (0,1) and v > 0
£ (@, X) = £ (@, X)| < 1X]* 0

Not sufficient: convergence of recession functions.

Definition
Families {{fs(])}€>0}j€N and {fs(oo)}€>0 are equivalent at oo on U C €, if for

) (4) _ ¢(o0)
réj)(R) 1= esssup sup |fe (, X) — fo ™ (2, X))
€U |X|>R |X]
it holds

lim limsup limsup T‘éj) (R) =0.
Rooo j 0o  e—0

28 /29



Corresponding basic result for p =1

Theorem (I'-closure on a single domain)

Let Q@ C R™ be bounded and open. Suppose that the family of Borel functions

féj) QX R™X™ 5 R jEN, e >0, uniformly fulfils a standard linear growth
condition. Assume that

If then
. ~ and = at oo on Q . =~ and = at oo on Q2
1
1
|
) r(et) ol
1
I
j () _____ remteie (c0)
F FY > F§
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