
Closure and commutability
results for Γ-limts

Martin Jesenko

joint work with Bernd Schmidt (Universität Augsburg)

Oberseminar Angewandte Mathematik
Freiburg, 15 January 2019

Bernd Schmidt, M. J. Closure and commutability results for Γ-limits and the
geometric linearization and homogenization of multiwell energy functionals. SIAM
J. Math. Anal. 46 (2014), no. 4, 2525-2553.

1 / 29



Plan of the talk

Introduction and motivation

Abstract results and extensions

Case p = 1

2 / 29



Γ-convergence

Definition
Let {Fj : M → [−∞,∞]}j∈N be a sequence of functionals on a metric space
(M,d). Then {Fj}j∈N Γ-converges at x ∈M to some µ ∈ [−∞,∞] if the following
conditions are satisfied:

I (liminf-inequality) If xj → x in M , then

lim inf
j→∞

Fj(xj) ≥ µ.

I (recovery sequence) There exists a sequence xj → x in M such that

lim
j→∞

Fj(xj) = µ.

Denotation:
µ = Γ(d)- lim

j→∞
Fj(x).

We say that {Fj}j∈N Γ-converges to some functional F∞, if it Γ-converges to
F∞(x) at every x ∈M .
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Fundamental properties

Γ-limits are always lower semicontinuous.

Theorem
Let {Fj : M → (−∞,∞]}j∈N be a sequence of functionals. Suppose

I there exists a compact set K ⊂M such that for all j ∈ N

inf
x∈K

Fj(x) = inf
x∈M

Fj(x).

I Γ(d)- lim
j→∞

Fj = F∞.

Then
∃ min
x∈M

F∞(x) = lim
j→∞

inf
x∈M

Fj(x).

Moreover, if {xj}j∈N is a precompact sequence such that

lim
j→∞

Fj(xj) = lim
j→∞

inf
x∈M

Fj(x),

then every limit of a subsequence of {xj}j∈N is a minimum point for F∞.

Theorem (Urysohn property)
Take λ ∈ [−∞,∞] and x ∈M . Then

λ = Γ(d)- lim
j→∞

Fj(x) ⇐⇒ ∀{jk}k∈N ⊂ N ∃{kl}l∈N ⊂ N : λ = Γ(d)- lim
l→∞

Fjkl
(x)
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Properties

I On a separable metric space every sequence of functionals always contains at
least a subsequence that Γ-converges.

I If we have a constant sequence, i.e., Fj = F for all j ∈ N, then

Γ(d)- lim
j→∞

Fj = lscF

where lsc stands for lower semicontinuous envelope (in the metric d).
I For a non-increasing sequence {Fj}j∈N, it holds

Γ(d)- lim
j→∞

Fj = lsc
(

lim
j→∞

Fj

)
= lsc

(
inf
j∈N

Fj

)
.

I If {Fj}j∈N is non-decreasing, then

Γ(d)- lim
j→∞

Fj = lim
j→∞

(
lscFj

)
= sup
j∈N

(
lscFj

)
.

I {Fj}j∈N Γ-converges if and only if {lscFj}j∈N Γ-converges (and Γ-limits then
coincide).
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Linear elasticity

Equilibria of a hyperelastic material (with given boundary values) can be viewed
upon as minimizers of

∫
Ω W

(
x,∇v(x)

)
dx with W being the stored-energy

function. Let us suppose:
I W is frame-indifferent with W (x, I) = 0 and
I W (x,X) ≥ C dist2

(
X,SO(n)

)
.

If the displacements are small, i.e. v(x) = x+ δu(x), then

1
δ2W (x, I + δY ) ≈

1
2
∂2
YW (x, I)[Ysym, Ysym].

The forth-order tensor A(x) := ∂2
YW (x, I) is called the elasticity tensor (at x).

The corresponding energy given by the integral functional (with Eu := (∇u)sym)

E(0)(u) =
{

1
2

∫
Ω A(x)[Eu(x),Eu(x)] dx, u ∈ u0 +W 1,2

0 (Ω;Rn),
∞, else on L2(Ω;Rn),

is a good approximation of the original energy

E(δ)(u) :=
{

1
δ2

∫
Ω W (x, I + δ∇u(x)) dx, u ∈ u0 +W 1,2

0 (Ω;Rn),
∞, else on L2(Ω;Rn),

since
Γ(L2)- lim

δ→0
E(δ) = E(0).

Dal Maso, Negri, Percivale (2002)
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Homogenization (and relaxation)

Suppose W : Rn × Rm×n → R
I is In-periodic in the first variable (with I := (0, 1)),
I α|X|p ≤W (x,X) ≤ β

(
|X|p + 1).

Under these conditions the family of functionals Eε, ε > 0, given by

Eε(y) :=
{ ∫

Ω W (x
ε
,∇y(x)) dx, y ∈W 1,p(Ω;Rm),
∞, else on Lp(Ω;Rm),

Γ(Lp)- converges to

Ehom(y) =
{ ∫

Ω Whom(∇y(x)) dx, y ∈W 1,p(Ω;Rm),
∞, else on Lp(Ω;Rm).

The homogenized stored-energy function is given by

Whom(X) = inf
k∈N

inf
{

1
kn

∫
kIn

W (x,X +∇ϕ(x)) dx : ϕ ∈W 1,p
0 (kIn;Rm)

}
.

Braides (1985), Müller (1987)
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Linearization + homogenization = ?

If may have a material with fine periodic structure and small displacements. In
this case:

1
δ2

∫
Ω W

(
x
ε
, I + δ∇u(x)

)
dx

∫
Ω A

(
x
ε

)
[Eu(x),Eu(x)] dx

1
δ2

∫
Ω Whom

(
I + δ∇u(x)

)
dx

Γ

Γ

I linearization X

I homogenization X

I commutability: Müller, Neukamm (2011)
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Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt
(2008)

Σ̃δ :=
⋃
S∈Σ

SO(n)(I + δS) for some finite set of positive matrices Σ ⊂ Rn×nsym .

Suppose Wδ : Rn × Rn×n → R are
I Carathéodory, frame indifferent,
I Wδ(x,X) = 0 ⇐⇒ X ∈ Σ̃δ,
I Wδ(x,X) ≥ C dist2(X, Σ̃δ).

Let
Vδ : Ω× Rn×nsym → R, Vδ(x, Y ) :=

1
δ2Wδ(x, I + δY ).

If Vδ → V uniformly in x and locally uniformly Y , and V (x, Y ) ≤ U(|Y |2 + 1), then

1
δ2

∫
Ω
Wδ

(
x, I + δ∇u(x)

)
dx

Γ−→
∫

Ω
V qcls

(
x,Eu(x)

)
dx

with

V qcls(x, Y ) = inf
ϕ∈C∞c (In;Rn)

∫
In
V
(
x, Y + Eϕ(y)

)
dy.

Our starting point: In case we have a fine periodic structure, do we also get a
commuting diagram?

9 / 29



Geometric linearization in the multiple-well case

Multiple-well case (e.g. in the martensitic phase of shape memory alloys): Schmidt
(2008)

Σ̃δ :=
⋃
S∈Σ

SO(n)(I + δS) for some finite set of positive matrices Σ ⊂ Rn×nsym .

Suppose Wδ : Rn × Rn×n → R are
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Commutability of Γ-limits

F
(j)
ε F

(∞)
ε

F
(j)
0

Γ

Γ

We have some doubly indexed family of function-
als. For one index fixed they Γ-converge.

I Does the family of limits also Γ-converge,
I and does the order matter?
I What about simultaneous limits?

We have some sequence of Γ-converging families
of functionals and another family. What is the
right notion of ”convergence”, so that the latter
also Γ-converges?
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Commutability of Γ-limits and Γ-closure
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Basic framework

Our functionals will be of form

F(u) :=
{ ∫

Ω f(x,∇u(x)) dx u ∈W 1,p(Ω;Rm)
∞ u ∈ Lp(Ω;Rm) \W 1,p(Ω;Rm)

with Ω open bounded in Rn and 1 < p <∞.

Definition

I A family f (j)
ε : Ω× Rm×n → R fulfils a standard p-growth condition if there

are α, β > 0 independent of j and ε such that

α|X|p − β ≤ f (j)
ε (x,X) ≤ β(|X|p + 1)

for almost all x ∈ Ω and all X ∈ Rm×n.
I Families

{{f (j)
ε }ε>0}j∈N and {f (∞)

ε }ε>0

are equivalent on U ⊂ Ω open, if

lim
j→∞

lim sup
ε→0

∫
U

sup
|X|≤R

|f (j)
ε (x,X)− f (∞)

ε (x,X)| dx = 0

for every R ≥ 0.
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Basic result on Γ-closure

Theorem (Γ-closure on a single domain)
Suppose that the family of Borel functions

f
(j)
ε : Ω× Rm×n → R, j ∈ N ∪ {∞}, ε > 0,

uniformly fulfils a standard p-growth condition.

If

F
(j)
ε F

(∞)
ε

F
(j)
0

≈ on Ω

Γ(Lp)

then

F
(j)
ε F

(∞)
ε

F
(j)
0 F

(∞)
0

≈

Γ(Lp) Γ(Lp)

Γ(Lp)

pointwise
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Tools for the proof

Key tool: Kristensen (1994); Fonseca, Müller, Pedregal (1998)

Lemma (Decomposition lemma)

Let {ui}i∈N be a bounded sequence in W 1,p(Ω;Rm). There exists a subsequence
{uik}k∈N and a sequence {vk}k∈N ⊂W 1,p(Ω;Rm) such that

lim
k→∞

|{∇vk 6= ∇uik} ∪ {vk 6= uik}| = 0

and {|∇vk|p}k∈N is equi-integrable.
Moreover, if ui ⇀ u in W 1,p(Ω;Rm), then the vk can be chosen in such a way
that vk = u on ∂Ω and vk ⇀ u in W 1,p(Ω;Rm).

13 / 29



Idea for the proof

F
(j)
ε F

(∞)
ε

F
(j)
0 F

(∞)
0

≈

Γ(Lp) Γ(Lp)

Γ(Lp)

pointwise

I Assume the vertical Γ-convergence.
I For every u ∈ Lp(Ω;Rm)

lim sup
j→∞

F
(j)
0 (u) ≤ F

(∞)
0 (u).

I For every uj → u in Lp(Ω;Rm)

lim inf
j→∞

F
(j)
0 (uj) ≥ F

(∞)
0 (u)

I Justification of our assumption by Urysohn property and pointwise
convergence below.
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Possible extensions

I variable domain X

If we assume equivalence and Γ-convergence on every open subset, then we
get more information on density.

I stochastic homogenization X

Random integral functionals that are periodic in law and ergodic are
homogenizable (and the Γ-limit is deterministic).

I lower bound X

It may be relaxed to the G̊arding type lower bound.
I boundary values X

I upper bound X

It may be relaxed for j <∞.
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G̊arding type functionals

Definition
We say that the family of integral functionals

F
(j)
ε : j ∈ N ∪ {∞}, ε > 0

with densities f (j)
ε is of uniform p-G̊arding type on U ⊂ Ω, if

I there is β > 0 such that

−β ≤ f (j)
ε (x,X) ≤ β(|X|p + 1)

for almost all x ∈ Ω and all X ∈ Rm×n,
I there are αU > 0, γU ∈ R such that

F
(j)
ε (u, U) ≥ αU

∫
U

|∇u(x)|p dx− γU

∫
U

|u(x)|p dx

for all u ∈W 1,p(U ;Rm).
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Γ-closure for G̊arding type functionals

Theorem
Suppose that the family of Borel functions

f
(j)
ε : Ω× Rm×n → R, j ∈ N ∪ {∞}, ε > 0,

is of uniform p-G̊arding type.

If

F
(j)
ε F

(∞)
ε

F
(j)
0

≈ on Ω

Γ(Lp)

then

F
(j)
ε F

(∞)
ε

F
(j)
0 F

(∞)
0

≈

Γ(Lp) Γ(Lp)

Γ(Lp)

pointwise
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Addition trick

Proposition
Suppose that the family {Fε}ε>0 with densities fε is of uniform p-G̊arding type
on Ω. Define for some null sequence λk ↘ 0

f
(k)
ε (x,X) := fε(x,X) + λk|X|p

and denote by F
(k)
ε the corresponding integral functionals.

If

F
(k)
ε

F
(k)
0

Γ(Lp)

then

F
(k)
ε Fε

F
(k)
0 F0

Γ(Lp) Γ(Lp)

Γ(Lp), inf

pointwise

18 / 29



Consequences

I Perturbation:

Fε Gε

F0

≈

Γ Γ

Homogenization closure by Braides (1986)

I Relaxation:

F(j) F(∞)

lsc F(j) lsc F(∞)

≈

Γ
Γ

Γ

Γ
pointwise

linearization in the one-well case by Dal Maso, Negri, Percivale
geometric linearization in the multiple-well case by Schmidt
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Γ-commuting diagrams

Theorem (Commutability)
Suppose that the family of functionals

F
(j)
ε , j ∈ N ∪ {∞}, ε > 0,

with densities f (j)
ε is of uniform p-G̊arding type on Ω.

If

F
(j)
ε F

(∞)
ε

F
(j)
0

≈ (also for ε fixed)

Γ

∀ε,R > 0 : lim
j→∞

∫
Ω

sup
|X|≤R

|f (j)
ε (x,X)−f (∞)

ε (x,X)| dx = 0

then

F
(j)
ε lsc F

(∞)
ε

F
(j)
0 F

(∞)
0

Γ

Γ Γ

Γ
pointwise

I Müller, Neukamm
I our setting
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Proof

F
(j)
ε F

(∞)
ε

F
(j)
0

≈ (also for ε fixed)

Γ
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Simultaneous limits

Theorem
Let Ω ⊂ Rn be bounded and open. Suppose that the family of functionals F

(j)
ε ,

j ∈ N ∪ {∞}, ε > 0, with densities f (j)
ε : Ω× Rm×n → R is of uniform p-G̊arding

type on Ω. Let us have {jk}k∈N ⊂ N and {εk}k∈N with εk ↘ 0. Assume that
I Γ(Lp)- lim

ε→0
F

(∞)
ε = F

(∞)
0 ,

I lim
k→∞

∫
Ω

sup
|X|≤R

|f (jk)
εk (x,X)− f (∞)

εk (x,X)| dx = 0 for every R > 0.

Then
Γ(Lp)- lim

k→∞
F

(jk)
εk = F

(∞)
0 .

E.g., this condition is surely satisfied if

∀R > 0 : lim
j→∞

sup
ε>0

∫
Ω

sup
|X|≤R

|f (j)
ε (x,X)− f (∞)

ε (x,X)| dx = 0

22 / 29



p = 1 case

F
(j)
ε F

(∞)
ε

F
(j)
0 F

(∞)
0

≈

Γ(L1) ?

?

Now suppose p = 1. Then Γ-limits below
would be finite on BV (Ω;Rm).

The counterexample is based on Bouchitte, Dal Maso (1993). It shows that the
consequence regarding perturbation cannot hold:

F Gε

F0 6= G0

≈

Γ Γ

23 / 29



Counterexample for p = 1 case

Let us consider the scalar case m = 1 with Ω := I = (−1, 1). Take

f : R→ R, f(ξ) := max{|ξ|, 2|ξ| − 1}.

It is
I convex,
I not 1-homogenous,
I satisfies the linear growth condition |ξ| ≤ f(ξ) ≤ 2|ξ|,
I its recession function is f(ξ) = lim

t→∞
f(tξ)
t

= 2|ξ|.

The constant sequence of functionals on L1(I) given by F,

F(u) :=
{ ∫ 1

−1 f(u′(x)) dx, u ∈W 1,1(I),
∞, else on L1(I),

Γ-converges to its relaxation F0 that is finite exactly on BV (I) and there takes
the values

F0(u) =
∫ 1

−1
f(u′(x)) dx+

∫ 1

−1
f
(
dDsu
d|Dsu| (x)

)
d|Dsu|(x)

=
∫ 1

−1
f(u′(x)) dx+ 2|Dsu|(I),

24 / 29
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Counterexample for p = 1 case (2)

Take

gε(x, ξ) := f
(

ξ
aε(x)

)
aε(x)

where

aε(x) :=
{ 1, |x| ≥ ε,

1
2ε , |x| < ε.

The (one-index) family {gε}ε>0 is
equivalent to the constant family
given by f :

lim sup
ε→0

∫ 1

−1
sup
|ξ|≤R

|gε(x, ξ)− f(ξ)| dx = lim sup
ε→0

∫ ε

−ε
sup
|ξ|≤R

| 1
2εf(2εξ)− f(ξ)| dx

≤ lim sup
ε→0

∫ ε

−ε
sup
|ξ|≤R

4|ξ| dx

= lim sup
ε→0

8Rε

= 0 25 / 29



Counterexample for p = 1 case (3)

Let us denote λε := aεL1 ∈M(I). Since for u ∈W 1,1(I)

Du = u′L1 =
u′

aε
λε

the corresponding functionals Gε have on W 1,1(I) the following representation

Gε(u) =
∫ 1

−1
gε(x, u′(x)) dx =

∫ 1

−1
f
(
dDu
dλε

(x)
)
dλε(x).

Since
λε
∗
⇀ λ := δ0 + L1 in M(I)

it follows by the results from Buttazzo, Freddi (1991) that Gε Γ(L1)-converges to
G0 given by

G0(u) =
∫ 1

−1
f

(
dDa

λ
u

dλ
(x)
)
dλ(x) +

∫ 1

−1
f

(
dDs

λ
u

d|Ds
λ
u| (x)

)
d|Dsλu|(x)

if u ∈ BV (I) and ∞ otherwise, where

Du = Daλu+Dsλu, Daλu� λ, Daλu ⊥ λ.
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Counterexample for p = 1 case (4)

Therefore, for u ∈ BV (I)

F0(u) =
∫ 1

−1
f(u′(x)) dx+ 2‖Dsu‖,

G0(u) =
∫ 1

−1
f

(
dDa

λ
u

dλ
(x)
)
dλ(x) + 2‖Dsλu‖.

Choose u := χ(0,1) ∈ SBV (I). Then Du = δ0 and

Dau+Dsu = 0 · L1 + δ0,

Daλu+Dsλu = χ{0} · λ+ 0.

Hence
F0(χ(0,1)) = 2 and G0(χ(0,1)) = 1.
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Additional condition at ∞

Problems: families whose difference grows linearly for large X at least on some set
of x.

Possible solution: to assume for some δ ∈ (0, 1) and γ > 0

|f (j)
ε (x,X)− f (∞)

ε (x,X)| ≤ γ|X|1−δ

Not sufficient: convergence of recession functions.

Definition
Families {{f (j)

ε }ε>0}j∈N and {f (∞)
ε }ε>0 are equivalent at ∞ on U ⊂ Ω, if for

r
(j)
ε (R) := ess sup

x∈U
sup
|X|≥R

|f (j)
ε (x,X)− f (∞)

ε (x,X)|
|X|

it holds
lim
R→∞

lim sup
j→∞

lim sup
ε→0

r
(j)
ε (R) = 0.
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Corresponding basic result for p = 1

Theorem (Γ-closure on a single domain)
Let Ω ⊂ Rn be bounded and open. Suppose that the family of Borel functions
f

(j)
ε : Ω× Rm×n → R, j ∈ N, ε > 0, uniformly fulfils a standard linear growth

condition. Assume that
If

F
(j)
ε F

(∞)
ε

F
(j)
0

≈ and ≈ at ∞ on Ω

Γ(L1)

then

F
(j)
ε F

(∞)
ε

F
(j)
0 F

(∞)
0

≈ and ≈ at ∞ on Ω

Γ(L1) Γ(L1)

Γ(L1)

pointwise
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