Dr. Martin Nolte

Martin Nolte

Abteilung für Angewandte Mathematik
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 10, Raum 204
79104 Freiburg im Breisgau

Tel: 0761 / 203 5630
E-Mail: nolte@mathematik.uni-freiburg.de
Sprechstunde: Di 10:00 - 11:00 und n. V.


Lehre | Veröffentlichungen | Software


R. Klöfkorn, A. Kvashchuk, M. Nolte: Comparison of Linear Reconstructions for Second-Order Finite Volume Schemes on Polyhedral Grids, Computational Geosciences, 2017

Ch. Gersbacher, M. Nolte: Constrained Reconstruction in MUSCL-type Finite Volume Schemes, to appear in the proceedings of the 16th International Conference on Hyberbolic Problems: Theory, Numerics, Applications, Aachen, 2016

R. Klöfkorn, A. Kvashchuk, M. Nolte: Comparison of Linear Reconstructions for Second Order Finite Volume Schemes on Polyhedral Grids, 15th European Conference on the Mathematics of Oil Recovery 2016 (ECMOR XV), vol. 1, pp. 1052-1062, EAGE, 2016

M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke, B. Flemisch, Ch. Gersbacher, C. Gräser, F. Gruber, Ch. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski, O. Sander: The Distributed and Unified Numerics Environment, Version 2.4, Archive of Numerical Software 4 (100), 13-29, 2016

M. Alkämper, A. Dedner, R. Klöfkorn, M. Nolte: The DUNE-ALUGrid Module, Archive of Numerical Software 4 (1), 1-28, 2016

M. Nolte: Approximation of the Effective Hamiltonian Through a Degenerate Elliptic Problem", Hyperbolic Problems: Theory, Numerics, Applications (F. Ancona, A. Bressan, P. Marcati, A. Marson, eds.), 809-816, AIMS, 2014

R. Klöfkorn and M. Nolte: Solving the Reactive Compressible Navier-Stokes Equations in a Moving Domain NIC Symposium 2014 (K. Binder, G.~Münster, M. Kremer, eds.), John von Neumann Institute for Computing, Jülich, 2014, pp. 353-362

M. Nolte: Efficient Numerical Approximation of the Effective Hamiltonian, Dissertation, Universtität Freiburg, 2011

A. Dedner, M. Nolte: Construction of Local Finite Element Spaces Using the Generic Reference Elements, Advances in DUNE, Springer, 2012

A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger: DUNE-FEM. A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing, Advances in DUNE, Springer, 2012

R. Klöfkorn, M. Nolte: Performance Pitfalls in the DUNE Grid Interface, Advances in DUNE, Springer, 2012

M. Nolte: A Fast Sweeping Method for Computing the Effective Hamiltonian, Hyberbolic Problems: Theory, Numerics, Applications (T. Li, S. Jiang, eds.), 601-609, Higher Education Press, 2012

A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger: A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module, Computing 90 (3-4), 165-196, 2010

M. Nolte: Computing the Effective Hamiltonian for a Time-Dependent Hamiltonian, Hyperbolic Problems: Theory, Numerics, Applications (E. Tadmor, J.-G. Liu, and A. Tzavaras, eds.), 815-824, Proc. Symp. Appl. Math, AMS, 2009

M. Nolte, D. Kröner: Convergence of Well-Balanced Schemes for the Initial Boundary Value Problem for Scalar Conservation Laws in 1D, Hyperbolic Problems: Theory, Numerics, Applications (S. Benzoni-Gavage, D. Serre, eds.), 791-798, Springer, 2008

M. Nolte: Ein balanciertes Verfahren zur numerischen Lösung von Anfangsrandwertproblemen für skalare Erhaltungsgleichungen mit Quellterm in 1D, Diplomarbeit, Universität Freiburg, 2005