Dr. Martin Nolte

Martin Nolte

Abteilung für Angewandte Mathematik
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 10, Raum 204
79104 Freiburg im Breisgau

Tel: 0761 / 203 5630
E-Mail: nolte@mathematik.uni-freiburg.de
Sprechstunde: Di 10:00 - 11:00 und n. V.


Lehre | Veröffentlichungen | Software


R. Klöfkorn, A. Kvashchuk, M. Nolte: Comparison of Linear Reconstructions for Second-Order Finite Volume Schemes on Polyhedral Grids, Computational Geosciences, 2017

M. Alkämper, A. Dedner, R. Klöfkorn, M. Nolte: The DUNE-ALUGrid Module, Archive of Numerical Software 4 (1), 2016

M. Nolte: Efficient Numerical Approximation of the Effective Hamiltonian, Dissertation, Universtität Freiburg, 2011

A. Dedner, M. Nolte: Construction of Local Finite Element Spaces Using the Generic Reference Elements, Advances in DUNE, Springer, 2012

A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger: DUNE-FEM. A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing, Advances in DUNE, Springer, 2012

R. Klöfkorn, M. Nolte: Performance Pitfalls in the DUNE Grid Interface, Advances in DUNE, Springer, 2012

M. Nolte: A Fast Sweeping Method for Computing the Effective Hamiltonian, Proceedings of the 13th International Conference on Hyberbolic Problems: Theory, Numerics, Applications, Beijing, 2010

A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger: A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module, Computing 90 (3-4), 165-196, 2010

M. Nolte: Computing the Effective Hamiltonian for a Time-Dependent Hamiltonian, Proceedings of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Maryland, 2008

M. Nolte, D. Kröner: Convergence of Well-Balanced Schemes for the Initial Boundary Value Problem for Scalar Conservation Laws in 1D, Proceedings of the 11th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Lions, 2006

M. Nolte: Ein balanciertes Verfahren zur numerischen Lösung von Anfangsrandwertproblemen für skalare Erhaltungsgleichungen mit Quellterm in 1D, Diplomarbeit, Universität Freiburg, 2005