L^p -versions of the generalized Korn inequalities for incompatible tensor fields

Peter Lewintan^{1,*}, Stefan Müller² and Patrizio Neff¹

December 13, 2019

For $1 we prove an <math>L^p$ -version of the generalized Korn's inequality for incompatible tensor fields P in $W_0^{1, p}(\operatorname{Curl}; \Omega, \mathbb{R}^{3 \times 3})$. More precisely, let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain. Then there exists a constant c > 0 such that

$$\|P\|_{L^p(\Omega,\mathbb{R}^{3\times 3})} \le c \left(\|\operatorname{sym} P\|_{L^p(\Omega,\mathbb{R}^{3\times 3})} + \|\operatorname{Curl} P\|_{L^p(\Omega,\mathbb{R}^{3\times 3})}\right)$$

holds for all tensor fields $P \in W_0^{1, p}(\operatorname{Curl}; \Omega, \mathbb{R}^{3 \times 3})$, i.e., for all $P \in W^{1, p}(\operatorname{Curl}; \Omega, \mathbb{R}^{3 \times 3})$ with vanishing tangential trace $P \times \nu = 0$ on $\partial\Omega$ where ν denotes the outward unit normal vector field to $\partial\Omega$. For compatible $P = \nabla u$ this recovers an L^p -version of the classical Korn's first inequality

$$\|\boldsymbol{\nabla} u\|_{L^p(\Omega,\mathbb{R}^{3\times 3})} \le c \,\|\text{sym}\,\boldsymbol{\nabla} u\|_{L^p(\Omega,\mathbb{R}^{3\times 3})} \quad \text{with } \boldsymbol{\nabla} u \times \nu = 0 \quad \text{on } \partial\Omega,$$

and for skew-symmetric $P = A \in \mathfrak{so}(3)$ an L^p -version of the Poincaré inequality

 $\|A\|_{L^p(\Omega,\mathfrak{so}(3))} \leq c \|\operatorname{Curl} A\|_{L^p(\Omega,\mathbb{R}^{3\times 3})} \quad \text{with } A \times \nu = 0 \ \Leftrightarrow \ A = 0 \quad \text{on } \partial\Omega.$

Further generalizations will be discussed.

AMS 2010 subject classification: Primary: 35A23; Secondary: 35B45, 35Q74, 46E35.

Keywords: $W^{1, p}(Curl)$ -Korn's inequality, Poincaré's inequality, Curl-spaces, gradient plasticity, dislocation density, relaxed micromorphic model

 $^{^1\}mathrm{Chair}$ for Nonlinear Analysis and Modeling, Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany

²Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

 $[\]label{eq:corresponding} \ensuremath{^*\mathrm{Corresponding}}\xspace author, email: \ensuremath{\,\mathrm{peter.lewintan@uni-due.de}}\xspace.$