[102]
|
L. C. Berselli, A. Kaltenbach, R. Lewandowski, and M. Růžička.
On the existence of weak solutions for a family of unsteady
rotational Smagorinsky models.
Pure Appl. Funct. Anal., 8(1):83--102, 2023.
[ DOI |
http ]
|
[101]
|
A. Kaltenbach and M. Růžička.
Existence of steady solutions for a model for micropolar
electrorheological fluid flows with not globally log--Hölder continuous
shear exponent.
J. Math. Fluid Mech., 25:Paper No. 40, 2023.
[ DOI |
http ]
|
[100]
|
A. Kaltenbach and M. Růžička.
Convergence analysis of a Local Discontinuous Galerkin
approximation for nonlinear systems with balanced Orlicz-structure.
ESAIM Math. Model. Numer. Anal., 57(3):1381--1411, 2023.
[ DOI |
http ]
|
[99]
|
A. Kaltenbach and M. Růžička.
A Local Discontinuous Galerkin approximation for the
p-Navier-Stokes system, Part I: Convergence analysis.
SIAM J. Num. Anal., 61:1613--1640, 2023.
[ DOI |
http ]
|
[98]
|
A. Kaltenbach and M. Růžička.
A Local Discontinuous Galerkin approximation for the
p-Navier-Stokes system, Part II: Convergence rates for the
velocity.
SIAM J. Num. Anal., 61:1641--1663, 2023.
[ DOI |
http ]
|
[97]
|
A. Kaltenbach and M. Růžička.
A Local Discontinuous Galerkin approximation for the
p-Navier-Stokes system, Part III: Convergence rates for the
pressure.
SIAM J. Num. Anal., 61:1763--1782, 2023.
[ DOI |
http ]
|
[96]
|
A. Kaltenbach and M. Růžička.
Analysis of a fully-discrete, non-conforming approximation of
evolution equations and applications.
Math. Models Methods Appl. Sci., 33:1147--1192, 2023.
[ DOI |
http ]
|
[95]
|
A. Kaltenbach and M. Růžička.
Existence of steady solutions for a general model for micropolar
electrorheological fluid flows.
SIAM J. Math. Anal., 55:2238--2260, 2023.
[ DOI |
http ]
|
[94]
|
A. Kaltenbach and M. Růžička.
Convergence analysis of a local discontinuous galerkin approximation
for nonlinear systems with balanced orlicz-structure.
ESAIM Math. Model. Numer. Anal., 57:1381--1411, 2023.
[ DOI |
http ]
|
[93]
|
L. C. Berselli and M. Růžička.
Space-time discretization for nonlinear parabolic systems with
p-structure.
IMA J. Numerical Analysis, 42:260--299, 2022.
[ DOI |
http ]
|
[92]
|
L. C. Berselli and M. Růžička.
Natural second-order regularity for parabolic systems with operators
having (p,δ)-structure and depending only on the symmetric gradient.
Calc. Var. PDEs, page Paper No. 137, 2022.
[ DOI |
http ]
|
[91]
|
L. C. Berselli and M. Růžička.
Natural second-order regularity for systems in the case 1<p<=2
using the A-approximation.
In A. Carapau, F. Vaidya, editor, Recent Advances in Mechanics
and Fluid-Structure Interaction with Applications: The Bong Jae Chung
Memorial Volume, pages 3--37. Springer International Publishing, 2022.
[ DOI |
http ]
|
[90]
|
A. Kaltenbach and M. Růžička.
Note on the existence theory for pseudo-monotone evolution problems.
J. Evol. Equ., 21(1):247--276, 2021.
[ DOI |
http ]
|
[89]
|
A. Kaltenbach and M. Ružička.
Variable exponent Bochner-Lebesgue spaces with symmetric gradient
structure.
J. Math. Anal. Appl., 503(2):Paper No. 125355, 34, 2021.
[ DOI |
http ]
|
[88]
|
J. Jeßberger and M. Ružička.
Existence of weak solutions for inhomogeneous generalized
Navier-Stokes equations.
Nonlinear Anal., 212:Paper No. 112538, 16, 2021.
[ DOI |
http ]
|
[87]
|
L. C. Berselli, A. Kaltenbach, and M. Ružička.
Analysis of fully discrete, quasi non-conforming approximations of
evolution equations and applications.
Math. Models Methods Appl. Sci., 31(11):2297--2343, 2021.
[ DOI |
http ]
|
[86]
|
L. C. Berselli and M. Ružička.
Optimal error estimate for a space-time discretization for
incompressible generalized Newtonian fluids: the Dirichlet problem.
Partial Differ. Equ. Appl., 2(4):Paper No. 59, 2021.
[ DOI |
http ]
|
[85]
|
H. Eberlein and M. Růžička.
Global weak solutions for an Newtonian fluid interacting with a
Koiter type shell under natural boundary conditions.
DCDS-S, pages 4093--4140, 2021.
[ DOI |
http ]
|
[84]
|
L. C. Berselli and M. Růžička.
Global regularity for systems with p-structure depending on the
symmetric gradient.
Adv. Nonlinear Anal., 9(1):176--192, 2020.
[ DOI |
http ]
|
[83]
|
M. Křepela and M. Růžička.
Solenoidal difference quotients and their application to the
regularity theory of the p-Stokes system.
Calc. Var. Partial Differential Equations, 59(1):Paper No. 34,
24, 2020.
[ DOI |
http ]
|
[82]
|
S. Bartels and M. Růžička.
Convergence of fully discrete implicit and semi-implicit
approximations of singular parabolic equations.
SIAM J. Numer. Anal., 58(1):811--833, 2020.
[ DOI |
http ]
|
[81]
|
L. C. Berselli and M. Růžička.
On the regularity of solution to the time-dependent p-Stokes
system.
Opuscula Math., 40(1):49--69, 2020.
[ DOI ]
|
[80]
|
M. Křepela and M. Růžička.
Addendum to "A counterexample related to the regularity of the
p-Stokes problem".
J. Math. Science, 247(6):957--959, 2020.
|
[79]
|
T. Malkmus, M. Růžička, S. Eckstein, and I. Toulopoulos.
Generalizations of SIP methods to systems with p-structure.
IMA J. Numer. Anal., 38(3):1420--1451, 2018.
[ DOI |
http ]
|
[78]
|
P. Nägele and M. Růžička.
Generalized Newtonian fluids in moving domains.
J. Differential Equations, 264(2):835--866, 2018.
[ DOI |
http ]
|
[77]
|
M. Křepela and M. Růžička.
A counterexample related to the regularity of the p-Stokes
problem.
J. Math. Science, 232 (3):390--401, 2018.
translated from Problemy Matematicheskogo Analiza 92, 2018, pp.
159--168.
[ DOI |
http ]
|
[76]
|
S. Eckstein and M. Růžička.
On the full space--time discretization of the generalized Stokes
equations: The Dirichlet case.
SIAM J. Numer. Anal., 56(4):2234--2261, 2018.
[ DOI |
http ]
|
[75]
|
L. C. Berselli and M. Růžička.
Global regularity properties of steady shear thinning flows.
J. Math. Anal. Appl., 450(2):839–--871, 2017.
[ DOI |
http ]
|
[74]
|
E. Bäumle and M. Růžička.
Existence of weak solutions for unsteady motions of micro-polar
electrorheological fluids.
SIAM J. Math. Anal., 49(1):115--141, 2017.
[ DOI |
http ]
|
[73]
|
E. Bäumle and M. Růžička.
Note on the existence theory for evolution equations with
pseudo-monotone operators.
Ric. Mat., 66(1):35--50, 2017.
[ DOI |
http ]
|
[72]
|
M. Růžička, V. V. Shelukhin, and M. M. dos Santos.
Steady flows of Cosserat-Bingham fluids.
Math. Methods Appl. Sci., 40(7):2746--2761, 2017.
[ DOI |
http ]
|
[71]
|
B. Rummler, M. Růžička, and G. Thäter.
Exact Poincaré constants in two-dimensional annuli.
ZAMM Z. Angew. Math. Mech., 97(1):110--122, 2017.
[ DOI |
http ]
|
[70]
|
Y. Kagei and M. Růžička.
The Oberbeck-Boussinesq approximation as a constitutive limit.
Continuum Mech. Thermodyn., 28(5):1411--1419, 2016.
[ DOI |
http ]
|
[69]
|
E. Molitor and M. Růžička.
On inhomogeneous p-Navier-Stokes systems.
In V. Radulescu, A. Sequeira, and V. Solonnikov, editors, Recent
Advances in PDEs and Applications, volume 666 of Contemp. Math., pages
317--340. AMS Proceedings, 2016.
|
[68]
|
P. Nägele, M. Růžička, and D. Lengeler.
Functional setting for unsteady problems in moving domains and
applications.
Comp. Var. Ell. Syst., 62(1):66--97, 2016.
[ DOI |
http ]
|
[67]
|
F. Ettwein, M. Růžička, and B. Weber.
Existence of steady solutions for micropolar electrorheological fluid
flows.
Nonlinear Anal., 125:1--29, 2015.
[ DOI |
http ]
|
[66]
|
Luigi C. Berselli, Lars Diening, and Michael Růžička.
Optimal error estimate for semi-implicit space-time discretization
for the equations describing incompressible generalized Newtonian fluids.
IMA J. Numer. Anal., 35(2):680--697, 2015.
[ DOI |
http ]
|
[65]
|
Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos.
Numerical solutions of systems with (p,δ)-structure using
local discontinuous Galerkin finite element methods.
Internat. J. Numer. Methods Fluids, 76(11):855--874, 2014.
[ DOI |
http ]
|
[64]
|
Lars Diening, Dietmar Köner, Michael Růžička, and Ioannis
Toulopoulos.
A local discontinuous Galerkin approximation for systems with
p-structure.
IMA J. Numer. Anal., 34(4):1447--1488, 2014.
[ DOI |
http ]
|
[63]
|
Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos.
Local discontinuous Galerkin numerical solutions of non-Newtonian
incompressible flows modeled by p-Navier-Stokes equations.
J. Comput. Phys., 270:182--202, 2014.
[ DOI |
http ]
|
[62]
|
Daniel Lengeler and Michael Růžička.
Weak solutions for an incompressible Newtonian fluid interacting
with a Koiter type shell.
Arch. Ration. Mech. Anal., 211(1):205--255, 2014.
[ DOI |
http ]
|
[61]
|
V. V. Shelukhin and M. Růžička.
On Cosserat-Bingham fluids.
ZAMM Z. Angew. Math. Mech., 93(1):57--72, 2013.
[ DOI |
http ]
|
[60]
|
L. Diening, P. Nägele, and M. Růžička.
Monotone operator theory for unsteady problems in variable exponent
spaces.
Complex Var. Elliptic Equ., 57(11):1209--1231, 2012.
[ DOI |
http ]
|
[59]
|
Hannes Eberlein and Michael Růžička.
Existence of weak solutions for unsteady motions of
Herschel-Bulkley fluids.
J. Math. Fluid Mech., 14(3):485--500, 2012.
[ DOI |
http ]
|
[58]
|
L. Belenki, L. C. Berselli, L. Diening, and M. Růžička.
On the finite element approximation of p-Stokes systems.
SIAM J. Numer. Anal., 50(2):373--397, 2012.
[ DOI |
http ]
|
[57]
|
Antonín Novotný, Michael Růžička, and Gudrun
Thäter.
Rigorous derivation of the anelastic approximation to the
Oberbeck-Boussinesq equations.
Asymptot. Anal., 75(1-2):93--123, 2011.
|
[56]
|
L. Diening, D. Lengeler, and M. Růžička.
The Stokes and Poisson problem in variable exponent spaces.
Complex Var. Elliptic Equ., 56(7-9):789--811, 2011.
[ DOI |
http ]
|
[55]
|
Hugo Beirão da Veiga, Petr Kaplický, and Michael
Růžička.
Boundary regularity of shear thickening flows.
J. Math. Fluid Mech., 13(3):387--404, 2011.
[ DOI |
http ]
|
[54]
|
A. Passerini, C. Ferrario, M. Růžička, and G. Thäter.
Theoretical results on steady convective flows between horizontal
coaxial cylinders.
SIAM J. Appl. Math., 71(2):465--486, 2011.
[ DOI |
http ]
|
[53]
|
Antonín Novotný, Michael Růžička, and Gudrun
Thäter.
Singular limit of the equations of magnetohydrodynamics in the
presence of strong stratification.
Math. Models Methods Appl. Sci., 21(1):115--147, 2011.
[ DOI |
http ]
|
[52]
|
Jens Frehse and Michael Růžička.
Existence of a regular periodic solution to the Rothe approximation
of the Navier-Stokes equation in arbitrary dimension.
In New directions in mathematical fluid mechanics, Adv. Math.
Fluid Mech., pages 181--192. Birkhäuser Verlag, Basel, 2010.
|
[51]
|
Jens Frehse, Josef Málek, and Michael Růžička.
Large data existence result for unsteady flows of inhomogeneous
shear-thickening heat-conducting incompressible fluids.
Comm. Partial Differential Equations, 35(10):1891--1919, 2010.
[ DOI |
http ]
|
[50]
|
Hugo Beirão da Veiga, Petr Kaplický, and Michael
Růžička.
Regularity theorems, up to the boundary, for shear thickening flows.
C. R. Math. Acad. Sci. Paris, 348(9-10):541--544, 2010.
[ DOI |
http ]
|
[49]
|
Lars Diening, Michael Růžička, and Jörg Wolf.
Existence of weak solutions for unsteady motions of generalized
Newtonian fluids.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(1):1--46, 2010.
|
[48]
|
Lars Diening and Michael Růžička.
An existence result for non-Newtonian fluids in non-regular
domains.
Discrete Contin. Dyn. Syst. Ser. S, 3(2):255--268, 2010.
[ DOI |
http ]
|
[47]
|
Luigi C. Berselli, Lars Diening, and Michael Růžička.
Existence of strong solutions for incompressible fluids with shear
dependent viscosities.
J. Math. Fluid Mech., 12(1):101--132, 2010.
[ DOI |
http ]
|
[46]
|
L. Diening, M. Růžička, and K. Schumacher.
A decomposition technique for John domains.
Ann. Acad. Sci. Fenn. Math., 35(1):87--114, 2010.
[ DOI |
http ]
|
[45]
|
Arianna Passerini, Michael Růžička, and Gudrun Thäter.
Natural convection between two horizontal coaxial cylinders.
ZAMM Z. Angew. Math. Mech., 89(5):399--413, 2009.
[ DOI |
http ]
|
[44]
|
Luigi C. Berselli, Lars Diening, and Michael Růžička.
Optimal error estimates for a semi-implicit Euler scheme for
incompressible fluids with shear dependent viscosities.
SIAM J. Numer. Anal., 47(3):2177--2202, 2009.
[ DOI |
http ]
|
[43]
|
Jens Frehse and Michael Růžička.
Non-homogeneous generalized Newtonian fluids.
Math. Z., 260(2):355--375, 2008.
[ DOI |
http ]
|
[42]
|
Michael Růžička and Lars Diening.
Non-Newtonian fluids and function spaces.
In NAFSA 8--Nonlinear analysis, function spaces and
applications. Vol. 8, pages 94--143. Czech. Acad. Sci., Prague, 2007.
|
[41]
|
L. Diening, F. Ettwein, and M. Růžička.
C1,α-regularity for electrorheological fluids in two
dimensions.
NoDEA Nonlinear Differential Equations Appl., 14(1-2):207--217,
2007.
[ DOI |
http ]
|
[40]
|
L. Diening and M. Růžička.
Interpolation operators in Orlicz-Sobolev spaces.
Numer. Math., 107(1):107--129, 2007.
[ DOI |
http ]
|
[39]
|
F. Ettwein and M. Růžička.
Existence of local strong solutions for motions of electrorheological
fluids in three dimensions.
Comput. Math. Appl., 53(3-4):595--604, 2007.
[ DOI |
http ]
|
[38]
|
Lars Diening, Carsten Ebmeyer, and Michael Růžička.
Optimal convergence for the implicit space-time discretization of
parabolic systems with p-structure.
SIAM J. Numer. Anal., 45(2):457--472 (electronic), 2007.
[ DOI |
http ]
|
[37]
|
Yoshiyuki Kagei, Michael Růžička, and Gudrun Thäter.
A limit problem in natural convection.
NoDEA Nonlinear Differential Equations Appl., 13(4):447--467,
2006.
[ DOI |
http ]
|
[36]
|
Lars Diening, Andreas Prohl, and Michael Růžička.
Semi-implicit Euler scheme for generalized Newtonian fluids.
SIAM J. Numer. Anal., 44(3):1172--1190 (electronic), 2006.
[ DOI |
http ]
|
[35]
|
W. Eckart and M. Růžička.
Modeling micropolar electrorheological fluids.
Int. J. Appl. Mech. Eng., 11:813--844, 2006.
|
[34]
|
J. Málek, M. Růžička, and V. V. Shelukhin.
Herschel-Bulkley fluids: existence and regularity of steady flows.
Math. Models Methods Appl. Sci., 15(12):1845--1861, 2005.
[ DOI |
http ]
|
[33]
|
Lars Diening and Michael Růžička.
Strong solutions for generalized Newtonian fluids.
J. Math. Fluid Mech., 7(3):413--450, 2005.
[ DOI |
http ]
|
[32]
|
L. Diening and M. Růžička.
Integral operators on the halfspace in generalized Lebesgue spaces
Lp(·). II.
J. Math. Anal. Appl., 298(2):572--588, 2004.
[ DOI |
http ]
|
[31]
|
L. Diening and M. Růžička.
Integral operators on the halfspace in generalized Lebesgue spaces
Lp(·). I.
J. Math. Anal. Appl., 298(2):559--571, 2004.
[ DOI |
http ]
|
[30]
|
L. Diening and M. Růžička.
Calderón-Zygmund operators on generalized Lebesgue spaces
Lp(·) and problems related to fluid dynamics.
J. Reine Angew. Math., 563:197--220, 2003.
[ DOI |
http ]
|
[29]
|
Frank Ettwein and Michael Růžička.
Existence of strong solutions for electrorheological fluids in two
dimensions: steady Dirichlet problem.
In Geometric analysis and nonlinear partial differential
equations, pages 591--602. Springer, Berlin, 2003.
|
[28]
|
Lars Diening, Andreas Prohl, and Michael Růžička.
On time-discretizations for generalized Newtonian fluids.
In Nonlinear problems in mathematical physics and related
topics, II, volume 2 of Int. Math. Ser. (N. Y.), pages 89--118.
Kluwer/Plenum, New York, 2002.
[ DOI |
http ]
|
[27]
|
Luboš Pick and Michael Růžička.
An example of a space Lp(x) on which the Hardy-Littlewood
maximal operator is not bounded.
Expo. Math., 19(4):369--371, 2001.
[ DOI |
http ]
|
[26]
|
Andreas Prohl and Michael Růžička.
On fully implicit space-time discretization for motions of
incompressible fluids with shear-dependent viscosities: the case p<=2.
SIAM J. Numer. Anal., 39(1):214--249 (electronic), 2001.
[ DOI |
http ]
|
[25]
|
J. Málek, J. Nečas, and M. Růžička.
On weak solutions to a class of non-Newtonian incompressible fluids
in bounded three-dimensional domains: the case p>=2.
Adv. Differential Equations, 6(3):257--302, 2001.
|
[24]
|
K.R. Rajagopal and M. Růžička.
Mathematical modeling of electrorheological materials.
Continuum Mechanics and Thermodynamics, 13(1):59--78, 2001.
[ DOI |
http ]
|
[23]
|
Y. Kagei, M. Růžička, and G. Thäter.
Natural convection with dissipative heating.
Comm. Math. Phys., 214(2):287--313, 2000.
[ DOI |
http ]
|
[22]
|
Michael Růžička.
Flow of shear dependent electrorheological fluids: unsteady space
periodic case.
In Applied nonlinear analysis, pages 485--504. Kluwer/Plenum,
New York, 1999.
|
[21]
|
Michael Růžička.
Flow of shear dependent electrorheological fluids.
C. R. Acad. Sci. Paris Sér. I Math., 329(5):393--398, 1999.
[ DOI |
http ]
|
[20]
|
Jens Frehse and Michael Růžička.
A new regularity criterion for steady Navier-Stokes equations.
Differential Integral Equations, 11(2):361--368, 1998.
|
[19]
|
Michael Růžička.
A note on steady flow of fluids with shear dependent viscosity.
In Proceedings of the Second World Congress of Nonlinear
Analysts, Part 5 (Athens, 1996), volume 30, pages 3029--3039, 1997.
[ DOI |
http ]
|
[18]
|
Jens Frehse and Michael Růžička.
Existence of regular solutions to the steady Navier-Stokes
equations in bounded six-dimensional domains.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(4):701--719
(1997), 1996.
[ http ]
|
[17]
|
K. R. Rajagopal, M. Růžička, and A. R. Srinivasa.
On the Oberbeck-Boussinesq approximation.
Math. Models Methods Appl. Sci., 6(8):1157--1167, 1996.
[ DOI |
http ]
|
[16]
|
Jindřich Nečas, Michael Růžička, and Vladimir
Šverák.
Sur une remarque de J. Leray concernant la construction de
solutions singulières des équations de Navier-Stokes.
C. R. Acad. Sci. Paris Sér. I Math., 323(3):245--249, 1996.
|
[15]
|
J. Nečas, M. Růžička, and V. Šverák.
On Leray's self-similar solutions of the Navier-Stokes
equations.
Acta Math., 176(2):283--294, 1996.
[ DOI |
http ]
|
[14]
|
K.R. Rajagopal and M. Růžička.
On the modeling of electrorheological materials.
Mech. Research Comm., 23(4):401--407, 1996.
[ DOI |
http ]
|
[13]
|
J. Málek, M. Padula, and M. Růžička.
A note on derivative estimates for a Hopf solution to the
Navier-Stokes system in a three-dimensional cube.
In Navier-Stokes equations and related nonlinear problems
(Funchal, 1994), pages 141--146. Plenum, New York, 1995.
|
[12]
|
Jens Frehse and Michael Růžička.
Regular solutions to the steady Navier-Stokes equations.
In Navier-Stokes equations and related nonlinear problems
(Funchal, 1994), pages 131--139. Plenum, New York, 1995.
|
[11]
|
J. Málek, K. R. Rajagopal, and M. Růžička.
Existence and regularity of solutions and the stability of the rest
state for fluids with shear dependent viscosity.
Math. Models Methods Appl. Sci., 5(6):789--812, 1995.
[ DOI |
http ]
|
[10]
|
Jens Frehse and Michael Růžička.
Existence of regular solutions to the stationary Navier-Stokes
equations.
Math. Ann., 302(4):699--717, 1995.
[ DOI |
http ]
|
[9]
|
Jens Frehse and Michael Růžička.
Regularity for the stationary Navier-Stokes equations in bounded
domains.
Arch. Rational Mech. Anal., 128(4):361--380, 1994.
[ DOI |
http ]
|
[8]
|
Josef Málek, Michael Růžička, and Gudrun Thäter.
Fractal dimension, attractors, and the Boussinesq approximation in
three dimensions.
Acta Appl. Math., 37(1-2):83--97, 1994.
Mathematical problems for Navier-Stokes equations (Centro, 1993).
[ DOI |
http ]
|
[7]
|
Jens Frehse and Michael Růžička.
Weighted estimates for stationary Navier-Stokes equations.
Acta Appl. Math., 37(1-2):53--66, 1994.
Mathematical problems for Navier-Stokes equations (Centro, 1993).
[ DOI |
http ]
|
[6]
|
Jens Frehse and Michael Růžička.
On the regularity of the stationary Navier-Stokes equations.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21(1):63--95, 1994.
[ http ]
|
[5]
|
Josef Málek, Jindřich Nečas, and Michael
Růžička.
On the non-Newtonian incompressible fluids.
Math. Models Methods Appl. Sci., 3(1):35--63, 1993.
[ DOI |
http ]
|
[4]
|
Antonín Novotný and Michael Růžička.
Some qualitative properties of incompressible multipolar materials.
Ann. Univ. Ferrara Sez. VII (N.S.), 38:1--24 (1993), 1992.
|
[3]
|
Jindřich Nečas and Michael Růžička.
Global solution to the incompressible viscous-multipolar material
problem.
J. Elasticity, 29(2):175--202, 1992.
[ DOI |
http ]
|
[2]
|
Michael Růžička.
Mathematical and physical theory of multipolar viscoelasticity.
Bonner Mathematische Schriften [Bonn Mathematical Publications], 233.
Universität Bonn, Mathematisches Institut, Bonn, 1992.
|
[1]
|
J. Nečas and M. Růžička.
A dynamic problem of thermoelasticity.
Z. Anal. Anwendungen, 10(3):357--368, 1991.
|