Abteilung für Angewandte Mathematik
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 10
79104 Freiburg im Breisgau
Sprechstunde: n.V.
2023 | N. Cangiotti, M. Caponi, A. Maione, E. Vitillaro. Schrödinger-Maxwell equations driven by mixed local-nonlocal operators. |
2023 | P. Dondl, A. Maione, S. Wolff-Vorbeck. Phase field model for multi-material shape optimization of inextensible rods. |
[9] | N. Cangiotti, M. Caponi, A. Maione, E. Vitillaro. Klein-Gordon-Maxwell equations driven by mixed local-nonlocal operators. Milan Journal of Mathematics, 2023. (Accepted for publication) |
[8] | A. Maione, D. Mugnai, E. Vecchi. Variational methods for nonpositive mixed local-nonlocal operators. Fractional Calculus and Applied Analysis, 2023 (26), no.3, 943-961. (Open access) |
[7] | A. Maione, F. Paronetto, E. Vecchi. G-convergence of elliptic and parabolic operators depending on vector fields. ESAIM: Control, Optimisation and Calculus of Variations, 2023 (29), no.8, 1-21. (Open access) |
[6] | A. Maione, A. Pinamonti, F. Serra Cassano. Γ-convergence for functionals depending on vector fields. II. Convergence of minimizers. SIAM Journal on Mathematical Analysis, 2022 (54), no. 6, 5761–5791. |
[5] | A. Maione, A. M. Salort, E. Vecchi. Maz'ya-Shaposhnikova formula in Magnetic Fractional Orlicz-Sobolev spaces. Asymptotic Analysis, 2022 (26), no. 3-4, 201-214. |
[4] | A. Maione. H-convergence for equations depending on monotone operators in Carnot groups. Electronic Journal of Differential Equations, 2021 (2021), no. 13, 1-13. (Open access) |
[3] | M. Capolli, A. Maione, A. M. Salort, E. Vecchi. Asymptotic behaviours in Fractional Orlicz-Sobolev spaces on Carnot groups. The Journal of Geometric Analysis, 2021 (31), no. 3, 3196–3229. |
[2] | A. Maione, A. Pinamonti, F. Serra Cassano. Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness. Journal de Mathématiques Pures et Appliquées, 2020 (139), 109-142. |
[1] | A. Maione, E. Vecchi. Integral representation of local left-invariant functionals in Carnot groups. Analysis and Geometry in Metric Spaces, 2020 (8), no. 1, 1-14. (Open access) |