Dr. Alberto Maione

Alberto Maione

Abteilung für Angewandte Mathematik
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 10 79104 Freiburg im Breisgau

Sprechstunde: n.V.

Lehre

Sommersemester 2023

Wintersemester 2022/2023

Sommersemester 2022

Forschung

  • Variationsrechnung - Relaxation, Γ-Konvergenz und integrale Darstellungen

  • Partielle Differentialgleichungen - Elliptische und parabolische Gleichungen (Existenz-, Eindeutigkeitssätze und asymptotisches Verhalten von Lösungen)

  • Nichtlineare Analysis - Variationsmethoden (Mountain Pass theorem, Linking theorem, Saddle Point theorem)

  • Analyse auf subriemannschen Mannigfaltigkeiten - Carnot Gruppe, Heisenberg Gruppe

  • Materialwissenschaft - Nichtlineare Elastizität, Multi-Material-Modelle, diskrete bis kontinuumsmechanische Modelle, diskrete Versetzungen in Kristallen

Vorabdrucke

2023 N. Cangiotti, M. Caponi, A. Maione, E. Vitillaro. Schrödinger-Maxwell equations driven by mixed local-nonlocal operators.
2023 P. Dondl, A. Maione, S. Wolff-Vorbeck. Phase field model for multi-material shape optimization of inextensible rods.

Publikationen (die neuesten zuerst)

[9] N. Cangiotti, M. Caponi, A. Maione, E. Vitillaro. Klein-Gordon-Maxwell equations driven by mixed local-nonlocal operators. Milan Journal of Mathematics, 2023. (Accepted for publication)
[8] A. Maione, D. Mugnai, E. Vecchi. Variational methods for nonpositive mixed local-nonlocal operators. Fractional Calculus and Applied Analysis, 2023 (26), no.3, 943-961. (Open access)
[7] A. Maione, F. Paronetto, E. Vecchi. G-convergence of elliptic and parabolic operators depending on vector fields. ESAIM: Control, Optimisation and Calculus of Variations, 2023 (29), no.8, 1-21. (Open access)
[6] A. Maione, A. Pinamonti, F. Serra Cassano. Γ-convergence for functionals depending on vector fields. II. Convergence of minimizers. SIAM Journal on Mathematical Analysis, 2022 (54), no. 6, 5761–5791.
[5] A. Maione, A. M. Salort, E. Vecchi. Maz'ya-Shaposhnikova formula in Magnetic Fractional Orlicz-Sobolev spaces. Asymptotic Analysis, 2022 (26), no. 3-4, 201-214.
[4] A. Maione. H-convergence for equations depending on monotone operators in Carnot groups. Electronic Journal of Differential Equations, 2021 (2021), no. 13, 1-13. (Open access)
[3] M. Capolli, A. Maione, A. M. Salort, E. Vecchi. Asymptotic behaviours in Fractional Orlicz-Sobolev spaces on Carnot groups. The Journal of Geometric Analysis, 2021 (31), no. 3, 3196–3229.
[2] A. Maione, A. Pinamonti, F. Serra Cassano. Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness. Journal de Mathématiques Pures et Appliquées, 2020 (139), 109-142.
[1] A. Maione, E. Vecchi. Integral representation of local left-invariant functionals in Carnot groups. Analysis and Geometry in Metric Spaces, 2020 (8), no. 1, 1-14. (Open access)