Publikationen

Bitte beachten Sie, dass die verlinkten pdf-Dateien von den veröffentlichten Versionen abweichen können.

Preprints

[21] Sören Bartels, Klaus Böhnlein, Christian Palus, and Oliver Sander. Benchmarking numerical algorithms for harmonic maps into the sphere. 2024. [ bib | .pdf ]
[20] Harbir Antil, Sören Bartels, Alex Kaltenbach, and Rohit Khandelwal. Variational problems with gradient constraints: A priori and a posteriori error identities. 2024. [ bib | .pdf ]
[19] Sören Bartels, Giuseppe Buttazzo, and Hedwig Keller. Optimization of an eigenvalue arising in optimal insulation with a lower bound. 2024. [ bib | .pdf ]
[18] Sören Bartels, Thirupathi Gudi, and Alex Kaltenbach. A priori and a posteriori error identities for the scalar signorini problem. 2024. [ bib | .pdf ]
[17] Sören Bartels and Alex Kaltenbach. Exact a posteriori error control for variational problems via convex duality and explicit flux reconstruction. 2024. [ bib | .pdf ]
[16] Sören Bartels and Philipp Tscherner. Necessary and sufficient conditions for avoiding Babuska's paradox on simplicial meshes. 2024. [ bib | .pdf ]
[15] Sören Bartels, Hedwig Keller, and Gerd Wachsmuth. Numerical approximation of optimal convex shapes in R3. [ bib | .pdf ]
[14] Georgios Akrivis, Sören Bartels, and Christian Palus. Quadratic constraint consistency in the projection-free approximation of harmonic maps and bending isometries. 2023. [ bib | .pdf ]
[13] Sören Bartels and Alex Kaltenbach. Explicit a posteriori error representation for variational problems and application to tv-minimization. 2023. [ bib | .pdf ]
[12] Sören Bartels and Alex Kaltenbach. Error analysis for a Crouzeix-Raviart approximation of the obstacle problem. 2023. [ bib | .pdf ]
[11] Sören Bartels, Christian Palus, and Zhangxian Wang. Quasi-optimal error estimates for the approximation of stable harmonic maps. 2022. [ bib | .pdf ]
[10] Sören Bartels, Balázs Kovács, and Zhangxian Wang. Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints. 2022. [ bib | .pdf ]
[9] Sören Bartels, Max Griehl, Jakob Keck, and Stefan Neukamm. Modeling and simulation of nematic LCE rods. 2022. [ bib | .pdf ]
[8] Sören Bartels, Andrea Bonito, and Philipp Tscherner. Error estimates for a linear folding model. 2022. [ bib | .pdf ]
[7] Sören Bartels and Alex Kaltenbach. Explicit and efficient error estimation for convex minimization problems. 2022. [ bib | .pdf ]
[6] Sören Bartels and Pascal Weyer. Computing confined elasticae. Adv. Cont. Discr. Models (published online), 2022. [ bib | http | .pdf ]
[5] Sören Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, and Christian Palus. A nonlinear bending theory for nematic LCE plates. 2022. [ bib | .pdf ]
[4] Sören Bartels and Alex Kaltenbach. Error estimates for total-variation regularized minimization problems with singular dual solutions. Numer. Math. (published online), 2022. [ bib | http | .pdf ]
[3] Sören Bartels, Andrea Bonito, and Peter Hornung. Modeling and simulation of thin sheet folding. Interfaces Free Bound. (published online), 2021. [ bib | http | .pdf ]
[2] Harbir Antil, Sören Bartels, and Armin Schikorra. Approximation of fractional harmonic maps. IMAJNA (published online), 2021. [ bib | http | .pdf ]
[1] Sören Bartels and Nico Weber. Parameter learning and fractional differential operators: application in imaging and decomposition. AIMS (published online), 2020. [ bib | http | .pdf ]

Zeitschriftenartikel

[91] Sören Bartels, Robert Tovey, and Friedrich Wassmer. Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems. ESAIM Math. Model. Numer. Anal., 56(6):1871--1888, 2022. [ bib | DOI | http | .pdf ]
[90] Sören Bartels and Christian Palus. Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints. IMA J. Numer. Anal., 42(3):1903--1928, 2022. [ bib | DOI | http | .pdf ]
[89] Sören Bartels, Hedwig Keller, and Gerd Wachsmuth. Numerical approximation of optimal convex and rotationally symmetric shapes for an eigenvalue problem arising in optimal insulation. Comput. Math. Appl., 119:327--339, 2022. [ bib | DOI | http | .pdf ]
[88] Sören Bartels, Frank Meyer, and Christian Palus. Simulating self-avoiding isometric plate bending. SIAM J. Sci. Comput., 44(3):A1475--A1496, 2022. [ bib | DOI | http | .pdf ]
[87] Sören Bartels, Marijo Milicevic, Marita Thomas, Sven Tornquist, and Nico Weber. Approximation schemes for materials with discontinuities. In Non-standard discretisation methods in solid mechanics, volume 98 of Lect. Notes Appl. Comput. Mech., pages 505--565. Springer, Cham, [2022] (c)2022. [ bib | DOI | http | .pdf ]
[86] Sören Bartels and Stephan Hertzog. Error bounds for discretized optimal transport and its reliable efficient numerical solution. In Non-smooth and complementarity-based distributed parameter systems---simulation and hierarchical optimization, volume 172 of Internat. Ser. Numer. Math., pages 1--20. Birkhäuser/Springer, Cham, 2022. [ bib | .pdf ]
[85] Sören Bartels. Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations. Math. Comp., 90(332):2579--2602, 2021. [ bib | DOI | http | .pdf ]
[84] Sören Bartels. Simulation of constrained elastic curves and application to a conical sheet indentation problem. IMA J. Numer. Anal., 41(3):2255--2279, 2021. [ bib | DOI | http | .pdf ]
[83] Sören Bartels and Philipp Reiter. Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves. Math. Comp., 90(330):1499--1526, 2021. [ bib | DOI | http | .pdf ]
[82] Sören Bartels and Zhangxian Wang. Orthogonality relations of Crouzeix-Raviart and Raviart-Thomas finite element spaces. Numer. Math., 148(1):127--139, 2021. [ bib | DOI | http | .pdf ]
[81] Sören Bartels. Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. Appl., 93:214--229, 2021. [ bib | DOI | http | .pdf ]
[80] Sören Bartels and Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete Contin. Dyn. Syst. Ser. S, 14(1):71--88, 2021. [ bib | DOI | http | .pdf ]
[79] Sören Bartels. Finite element simulation of nonlinear bending models for thin elastic rods and plates. In Geometric partial differential equations. Part I, volume 21 of Handb. Numer. Anal., pages 221--273. Elsevier/North-Holland, Amsterdam, [2020] (c)2020. [ bib | .pdf ]
[78] Sören Bartels and Philipp Reiter. Numerical solution of a bending-torsion model for elastic rods. Numer. Math., 146(4):661--697, 2020. [ bib | DOI | http | .pdf ]
[77] Sören Bartels. Numerical simulation of inextensible elastic ribbons. SIAM J. Numer. Anal., 58(6):3332--3354, 2020. [ bib | DOI | http | .pdf ]
[76] Sören Bartels and Marijo Milicevic. Primal-dual gap estimators for a posteriori error analysis of nonsmooth minimization problems. ESAIM Math. Model. Numer. Anal., 54(5):1635--1660, 2020. [ bib | DOI | http | .pdf ]
[75] Sören Bartels and Marijo Milicevic. Efficient iterative solution of finite element discretized nonsmooth minimization problems. Comput. Math. Appl., 80(5):588--603, 2020. [ bib | DOI | http | .pdf ]
[74] Sören Bartels and Gerd Wachsmuth. Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput., 42(2):A1226--A1244, 2020. [ bib | DOI | http | .pdf ]
[73] Sören Bartels and Michael Ružička. Convergence of fully discrete implicit and semi-implicit approximations of singular parabolic equations. SIAM J. Numer. Anal., 58(1):811--833, 2020. [ bib | DOI | http | .pdf ]
[72] Sören Bartels and Giuseppe Buttazzo. Numerical solution of a nonlinear eigenvalue problem arising in optimal insulation. Interfaces Free Bound., 21(1):1--19, 2019. [ bib | DOI | http | .pdf ]
[71] Sören Bartels, Lars Diening, and Ricardo H. Nochetto. Unconditional stability of semi-implicit discretizations of singular flows. SIAM J. Numer. Anal., 56(3):1896--1914, 2018. [ bib | DOI | http | .pdf ]
[70] Sören Bartels, Philipp Reiter, and Johannes Riege. A simple scheme for the approximation of self-avoiding inextensible curves. IMA J. Numer. Anal., 38(2):543--565, 2018. [ bib | DOI | http | .pdf ]
[69] Sören Bartels, Marijo Milicevic, and Marita Thomas. Numerical approach to a model for quasistatic damage with spatial BV-regularization. In Trends in applications of mathematics to mechanics, volume 27 of Springer INdAM Ser., pages 179--203. Springer, Cham, 2018. [ bib | .pdf ]
[68] Sören Bartels, Andrea Bonito, Anastasia H. Muliana, and Ricardo H. Nochetto. Modeling and simulation of thermally actuated bilayer plates. J. Comput. Phys., 354:512--528, 2018. [ bib | DOI | http | .pdf ]
[67] Sören Bartels and Patrick Schön. Adaptive approximation of the Monge-Kantorovich problem via primal-dual gap estimates. ESAIM Math. Model. Numer. Anal., 51(6):2237--2261, 2017. [ bib | DOI | http | .pdf ]
[66] Harbir Antil and Sören Bartels. Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math., 17(4):661--678, 2017. [ bib | DOI | http | .pdf ]
[65] Sören Bartels and Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete Contin. Dyn. Syst. Ser. S, 10(6):1207--1232, 2017. [ bib | DOI | http | .pdf ]
[64] Sören Bartels. Numerical solution of a Föppl--von Kármán model. SIAM J. Numer. Anal., 55(3):1505--1524, 2017. [ bib | DOI | http | .pdf ]
[63] Sören Bartels, Andrea Bonito, and Ricardo H. Nochetto. Bilayer plates: model reduction, Γ-convergent finite element approximation, and discrete gradient flow. Comm. Pure Appl. Math., 70(3):547--589, 2017. [ bib | DOI | http | .pdf ]
[62] Sören Bartels. A simple scheme for the approximation of elastic vibrations of inextensible curves. IMA J. Numer. Anal., 36(3):1051--1071, 2016. [ bib | DOI | http | .pdf ]
[61] Sören Bartels and Marijo Milicevic. Stability and experimental comparison of prototypical iterative schemes for total variation regularized problems. Comput. Methods Appl. Math., 16(3):361--388, 2016. [ bib | DOI | http | .pdf ]
[60] Sören Bartels. Broken Sobolev space iteration for total variation regularized minimization problems. IMA J. Numer. Anal., 36(2):493--502, 2016. [ bib | DOI | http | .pdf ]
[59] Sören Bartels. Projection-free approximation of geometrically constrained partial differential equations. Math. Comp., 85(299):1033--1049, 2016. [ bib | DOI | http | .pdf ]
[58] Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. A total variation diminishing interpolation operator and applications. Math. Comp., 84(296):2569--2587, 2015. [ bib | DOI | http | .pdf ]
[57] Sören Bartels. Fast and accurate finite element approximation of wave maps into spheres. ESAIM Math. Model. Numer. Anal., 49(2):551--558, 2015. [ bib | DOI | http | .pdf ]
[56] Sören Bartels. Robustness of error estimates for phase field models at a class of topological changes. Comput. Methods Appl. Mech. Engrg., 288:75--82, 2015. [ bib | DOI | http | .pdf ]
[55] Sören Bartels and Peter Hornung. Bending paper and the Möbius strip. J. Elasticity, 119(1-2):113--136, 2015. [ bib | DOI | http | .txt ]
[54] Sören Bartels. Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comp., 84(293):1217--1240, 2015. [ bib | DOI | http | .pdf ]
[53] Sören Bartels, Mario Bebendorf, and Michael Bratsch. A fast and accurate numerical method for the computation of unstable micromagnetic configurations. In Singular phenomena and scaling in mathematical models, pages 413--434. Springer, Cham, 2014. [ bib | DOI | http | .pdf ]
[52] Sören Bartels and Alexander Raisch. Simulation of Q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals. In Singular phenomena and scaling in mathematical models, pages 383--412. Springer, Cham, 2014. [ bib | DOI | http | .pdf ]
[51] Sören Bartels. Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions. SIAM J. Numer. Anal., 52(2):708--716, 2014. [ bib | DOI | http | .pdf ]
[50] Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. Discrete total variation flows without regularization. SIAM J. Numer. Anal., 52(1):363--385, 2014. [ bib | DOI | http | .pdf ]
[49] Sören Bartels. A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal., 33(4):1115--1125, 2013. [ bib | DOI | http | .pdf ]
[48] Sören Bartels and Tomáš Roubíček. Numerical approaches to thermally coupled perfect plasticity. Numer. Methods Partial Differential Equations, 29(6):1837--1863, 2013. [ bib | .pdf ]
[47] Sören Bartels. Finite element approximation of large bending isometries. Numer. Math., 124(3):415--440, 2013. [ bib | DOI | http | .pdf ]
[46] Sören Bartels. Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal., 51(1):516--525, 2013. [ bib | DOI | http | .pdf ]
[45] Sören Bartels. Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal., 50(3):1162--1180, 2012. [ bib | DOI | http | .pdf ]
[44] Sören Bartels and Patrick Schreier. Local coarsening of simplicial finite element meshes generated by bisections. BIT, 52(3):559--569, 2012. [ bib | DOI | http | .pdf ]
[43] Sören Bartels, Georg Dolzmann, Ricardo H. Nochetto, and Alexander Raisch. Finite element methods for director fields on flexible surfaces. Interfaces Free Bound., 14(2):231--272, 2012. [ bib | DOI | http | .pdf ]
[42] Sören Bartels, Alexander Mielke, and Tomáš Roubíček. Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal., 50(2):951--976, 2012. [ bib | DOI | http | .pdf ]
[41] Sören Bartels and Martin Kružík. An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Model. Simul., 9(3):1276--1300, 2011. [ bib | DOI | http | .pdf ]
[40] Sören Bartels and Rüdiger Müller. Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. Numer. Math., 119(3):409--435, 2011. [ bib | DOI | http | .pdf ]
[39] Sören Bartels and Tomáš Roubíček. Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. ESAIM Math. Model. Numer. Anal., 45(3):477--504, 2011. [ bib | DOI | http | .pdf ]
[38] Sören Bartels and Rüdiger Müller. Quasi-optimal and robust a posteriori error estimates in L(L2) for the approximation of Allen-Cahn equations past singularities. Math. Comp., 80(274):761--780, 2011. [ bib | DOI | http | .pdf ]
[37] Sören Bartels, Rüdiger Müller, and Christoph Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal., 49(1):110--134, 2011. [ bib | DOI | http | .pdf ]
[36] Sören Bartels. Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comp., 79(271):1263--1301, 2010. [ bib | DOI | http | .pdf ]
[35] Sören Bartels, Georg Dolzmann, and Ricardo H. Nochetto. A finite element scheme for the evolution of orientation order in fluid membranes. M2AN Math. Model. Numer. Anal., 44(1):1--31, 2010. [ bib | DOI | http | .pdf ]
[34] Sören Bartels and Rüdiger Müller. A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound., 12(1):45--73, 2010. [ bib | DOI | http | .pdf ]
[33] Sören Bartels, Max Jensen, and Rüdiger Müller. Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal., 47(5):3720--3743, 2009. [ bib | DOI | http | .pdf ]
[32] Sören Bartels. Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal., 47(5):3486--3506, 2009. [ bib | DOI | http | .pdf ]
[31] Sören Bartels, Christian Lubich, and Andreas Prohl. Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp., 78(267):1269--1292, 2009. [ bib | DOI | http | .pdf ]
[30] Sören Bartels. Combination of global and local approximation schemes for harmonic maps into spheres. J. Comput. Math., 27(2-3):170--183, 2009. [ bib | www: ]
[29] Sören Bartels and Tomáš Roubíček. Thermoviscoplasticity at small strains. ZAMM Z. Angew. Math. Mech., 88(9):735--754, 2008. [ bib | DOI | http | .pdf ]
[28] Sören Bartels and Andreas Prohl. Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres. Numer. Math., 109(4):489--507, 2008. [ bib | DOI | http | .pdf ]
[27] L'ubomír Baňas, Sören Bartels, and Andreas Prohl. A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal., 46(3):1399--1422, 2008. [ bib | DOI | http | .pdf ]
[26] Sören Bartels, Joy Ko, and Andreas Prohl. Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation. Math. Comp., 77(262):773--788, 2008. [ bib | DOI | http | .pdf ]
[25] Sören Bartels and Carsten Carstensen. A convergent adaptive finite element method for an optimal design problem. Numer. Math., 108(3):359--385, 2008. [ bib | DOI | http | .pdf ]
[24] Sören Bartels, Xiaobing Feng, and Andreas Prohl. Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal., 46(1):61--87, 2007/08. [ bib | DOI | http | .pdf ]
[23] Sören Bartels and Andreas Prohl. Stable discretization of scalar and constrained vectorial Perona-Malik equation. Interfaces Free Bound., 9(4):431--453, 2007. [ bib | DOI | http | .pdf ]
[22] Sören Bartels and Andreas Prohl. Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comp., 76(260):1847--1859, 2007. [ bib | DOI | http | .pdf ]
[21] John W. Barrett, Sören Bartels, Xiaobing Feng, and Andreas Prohl. A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal., 45(3):905--927, 2007. [ bib | DOI | http | .pdf ]
[20] Sören Bartels, Carsten Carstensen, Sergio Conti, Klaus Hackl, Ulrich Hoppe, and Antonio Orlando. Relaxation and the computation of effective energies and microstructures in solid mechanics. In Analysis, modeling and simulation of multiscale problems, pages 197--224. Springer, Berlin, 2006. [ bib | DOI | http | .pdf ]
[19] Sören Bartels and Andreas Prohl. Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal., 44(4):1405--1419, 2006. [ bib | DOI | http | .pdf ]
[18] S. Bartels, C. Carstensen, and A. Hecht. P2Q2Iso2D=2D isoparametric FEM in Matlab. J. Comput. Appl. Math., 192(2):219--250, 2006. [ bib | DOI | http | .pdf ]
[17] Sören Bartels. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. M2AN Math. Model. Numer. Anal., 39(5):863--882, 2005. [ bib | DOI | http | .pdf ]
[16] Sören Bartels. Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal., 43(1):363--385, 2005. [ bib | DOI | http | .pdf ]
[15] Sören Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal., 43(1):220--238, 2005. [ bib | DOI | http | .pdf ]
[14] Sören Bartels. A posteriori error analysis for time-dependent Ginzburg-Landau type equations. Numer. Math., 99(4):557--583, 2005. [ bib | DOI | http | .pdf ]
[13] Sören Bartels and Tomáš Roubíček. Linear-programming approach to nonconvex variational problems. Numer. Math., 99(2):251--287, 2004. [ bib | DOI | http | .pdf ]
[12] S. Bartels and C. Carstensen. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math., 99(2):225--249, 2004. [ bib | DOI | http | .pdf ]
[11] Sören Bartels. Linear convergence in the approximation of rank-one convex envelopes. M2AN Math. Model. Numer. Anal., 38(5):811--820, 2004. [ bib | DOI | http | .pdf ]
[10] S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg., 193(48-51):5143--5175, 2004. [ bib | DOI | http | .pdf ]
[9] S. Bartels, C. Carstensen, and G. Dolzmann. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math., 99(1):1--24, 2004. [ bib | DOI | http | .pdf ]
[8] Sören Bartels. Adaptive approximation of Young measure solutions in scalar nonconvex variational problems. SIAM J. Numer. Anal., 42(2):505--530, 2004. [ bib | DOI | http | .pdf ]
[7] S. Bartels, C. Carstensen, P. Plecháč, and A. Prohl. Convergence for stabilisation of degenerately convex minimisation problems. Interfaces Free Bound., 6(2):253--269, 2004. [ bib | DOI | http | .pdf ]
[6] Sören Bartels and Andreas Prohl. Multiscale resolution in the computation of crystalline microstructure. Numer. Math., 96(4):641--660, 2004. [ bib | DOI | http | .pdf ]
[5] Carsten Carstensen, Sören Bartels, and Stefan Jansche. A posteriori error estimates for nonconforming finite element methods. Numer. Math., 92(2):233--256, 2002. [ bib | DOI | http | .pdf ]
[4] Sören Bartels and Carsten Carstensen. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order FEM. Math. Comp., 71(239):971--994, 2002. [ bib | DOI | http | .pdf ]
[3] Carsten Carstensen and Sören Bartels. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comp., 71(239):945--969, 2002. [ bib | DOI | http | .pdf ]
[2] Carsten Carstensen, Sören Bartels, and Roland Klose. An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math., 15(1-4):79--106 (2002), 2001. A posteriori error estimation and adaptive computational methods. [ bib | DOI | http | .pdf ]
[1] Sören Bartels, Carsten Carstensen, and Petr Plecháč. Finite element computation of macroscopic quantities in nonconvex minimisation problems and applications in materials science. In Multifield problems, pages 69--79. Springer, Berlin, 2000. [ bib | .pdf ]

Bücher

[3] Sören Bartels. Numerical approximation of partial differential equations, volume 64 of Texts in Applied Mathematics. Springer, [Cham], 2016. [ bib | DOI | http ]
[2] Sören Bartels. Numerik 3x9. Springer-Lehrbuch. Springer Spektrum, 2016. [ bib | DOI | http ]
[1] Sören Bartels. Numerical methods for nonlinear partial differential equations, volume 47 of Springer Series in Computational Mathematics. Springer, Cham, 2015. [ bib | DOI | http ]

Vorlesungsnotizen

[2] Sören Bartels. Einführung in die Programmierung für Studierende der Naturwissenschaften. Vorlesungsskript, 2018. [ bib | .pdf ]
[1] Sören Bartels. Numerical solution of nonsmooth problems. Lecture notes of a course given at the SAMM 2015, 2015. [ bib | .pdf ]

Konferenzbeiträge

[14] Sören Bartels, Andrea Bonito, Peter Hornung, and Philipp Tscherner. Modeling and simulation of thin sheet folding. Oberwolfach Reports, 2021. Oberwolfach Workshop on: Numerical Methods for Fully Nonlinear and Related PDEs. [ bib | DOI ]
[13] Sören Bartels and Philipp Reiter. Simulation of elastic knots and inextensible elastic curves. Oberwolfach Reports, 2019. Oberwolfach Workshop on: Surface, Bulk, and Geometric Partial Differential Equations: Interfacial, stochastic, non-local and discrete structures. [ bib | DOI ]
[12] Sören Bartels. Finite element methods for nonsmooth problems and application to a problem in optimal insulation. Oberwolfach Reports, 2018. Oberwolfach Workshop on: Computational Engineering. [ bib | DOI ]
[11] Sören Bartels, Stephan Hertzog, Marijo Milicevic, and Patrick Schön. Numerical methods for optimal transportation. Oberwolfach Reports, 2017. Oberwolfach Workshop on: Emerging Effects in Interfaces and Free Boundaries. [ bib | DOI ]
[10] Sören Bartels, Andrea Bonito, and Ricardo H. Nochetto. Numerical methods for bilayer bending problems. Oberwolfach Reports, 2015. Oberwolfach Workshop on: Geometric Partial Differential Equations: Surface and Bulk Processes. [ bib | DOI ]
[9] Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. Total variation minimization with finite elements. Oberwolfach Reports, 2013. Oberwolfach Workshop on: Interfaces and Free Boundaries: Analysis, Control and Simulation. [ bib | DOI ]
[8] Sören Bartels and Martin Kružík. An efficient approach to numerical solutions of multi-well variational problems. Oberwolfach Reports, 1(7):780--783, 2010. Oberwolfach Workshop on: Microstructures in Solids: From Quantum Models to Continua. [ bib | DOI ]
[7] Sören Bartels and Rüdiger Müller. Numerical analysis for phase field simulations of moving interfaces with topological changes. Proc. Appl. Math. Mech, 10(1), 2010. [ bib | DOI | .pdf ]
[6] Sören Bartels. Approximation of harmonic maps and wave maps. Oberwolfach Reports, 5(3):2037--2038, 2008. Oberwolfach Workshop on Nonstandard Finite Element Methods. [ bib | DOI | .pdf ]
[5] Sören Bartels, Georg Dolzmann, and Ricardo H. Nochetto. Analysis and numerical simulation of the evolution of patterns in the gel phase of lipid membranes. Oberwolfach Reports, 5(3):2318--2321, 2008. Oberwolfach Mini-Workshop on: Mathematics of Biological Membranes. [ bib | DOI ]
[4] Sören Bartels and Rüdiger Müller. Robust error estimates for adaptive phase field simulations. Proc. Appl. Math. Mech, 8(1):10983 -- 10984, 2008. [ bib | DOI | .pdf ]
[3] Sören Bartels and Rüdiger Müller. Robust a-posteriori error control of Cahn-Hilliard type equations with elasticity. Proc. Appl. Math. Mech, 7(1):1023305 -- 1023306, 2007. [ bib | DOI | .pdf ]
[2] Sören Bartels. Constraint preserving, inexact solution of implicit discretizations of Landau--Lifshitz--Gilbert equations and consequences for convergence. Proc. Appl. Math. Mech, 6(1):19--22, 2006. [ bib | DOI | .pdf ]
[1] Sören Bartels. Error estimates for the adaptive computation of a scalar three well problem. Proc. Appl. Math. Mech, 1(1):502--503, 2002. [ bib | DOI | .pdf ]

Abschlussarbeiten

[4] Sören Bartels. Finite element approximation of harmonic maps betweeen surfaces. Habilitation thesis, Humboldt Universität zu Berlin, Germany, 2009. [ bib | .pdf ]
[3] Sören Bartels. Numerical analysis of some nonconvex variational problems. Ph.D. thesis, Christian--Albrechts-Universität zu Kiel, Germany, 2001. [ bib | .pdf ]
[2] Sören Bartels. Theorie und Numerik retardierter Integralgleichungen elektromagnetischer Streufelder. Diploma thesis, Christian--Albrechts-Universität zu Kiel, Germany, 1999. [ bib | .pdf ]
[1] Sören Bartels. Numerical analysis of retarded potential integral equations of electromagnetism. Master thesis, Heriot--Watt University Edinburgh, Scotland, UK, 1998. [ bib | .pdf ]