Abteilung für Angewandte Mathematik
Universität Freiburg
Hermann-Herder-Str. 10
D-79104 Freiburg im Breisgau
Phone | +41 (0)79 4778025 |
Fax | N/A |
D. Kröner, T. Müller, L. M. Strehlau. Traces for functions of bounded variation on manifolds with applications to conservation laws on manifolds with boundary. SIAM Journal on Mathematical Analysis 47, no. 5, 3944-3962, 2015.
J. Giesselmann and T. Müller. Estimating the Geometric Error of Finite Volume Schemes for Conservation Laws on Surfaces for generic numerical flux functions. In: Jürgen Fuhrmann, Mario Ohlberger and Christian Rohde (eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, volume 77 of Springer Proceedings in Mathematics & Statistics, pages 323–331. Springer International Publishing, 2014.
J. Giesselmann and T. Müller. Geometric Error of Finite Volume Schemes for Conservation Laws on Evolving Surfaces. Numerische Mathematik 128, no. 3, pp. 489–516, 2014. arXiv
T. Müller and A. Pfeiffer. Well-balanced simulation of geophysical flows via the Shallow Water Equations with bottom topography: Consistency and Numerical Computation. Proceedings of the 14th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Padova, Italy, 2012. In: Fabio Ancona, Alberto Bressan, Pierangelo Marcati, Andrea Marson (eds.), Hyperbolic Problems: Theory, Numerics, Applications, pp. 801-808, AIMS Ser. Appl. Math. 8, AIMS, Springfield, 2014.
D. Lengeler and T. Müller. Scalar conservation laws on constant and time-dependent Riemannian manifolds. Journal of Differential Equations 254, pp. 1705–1727, 2013. arXiv
G. Dziuk, D. Kröner, T. Müller. Scalar conservation laws on moving hypersurfaces. Interfaces and Free Boundaries 15, no. 2, pp. 203-236, 2013. arXiv
T. Müller and D. Kröner. Related Problems for TV-Estimates for Conservation Laws on Surfaces. Proceedings of the 13th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Beijing, China, 2010. In: Tatsien Li; Song Jiang (eds.) Hyperbolic Problems: Theory, Numerics and Applications (2), pp. 584--592, Ser. Contemp. Appl. Math. CAM 18, Higher Ed. Press, Beijing 2012.
T. Müller. Scalar conservation laws on time-dependent Riemannian manifolds - analysis, numerical analysis and numerical simulations, PhD thesis, University of Freiburg, 2014. pdf
T. Müller. Erhaltungsgleichungen auf Mannigfaltigkeiten. Wohlgestelltheit, Totalvariationsabschätzungen und Numerik.
Diplom thesis, University of Freiburg, 2009. pdf